PROGRAMME PROJECT REPORT

B.Sc MATHEMATICS

(Distance Education Programme)

DIRECTORATE OF DISTANCE EDUCATION

ALAGAPPA UNIVERSITY

(A State University Accredite d with \mathbf{A}^{+}Grade by NAAC (CGPA:3.64) in the Third Cycle)

B.Sc MATHEMATICS

Choice Based Credit System (CBCS) (With effect from June 2018-2019 onwards)

a. Programme's Mission \& Objectives:

To afford a High Quality Under Graduate Degree (B.Sc) Mathematics through Distance Learning mode to the students in order to nurture them in the emerging society among the young minds.

The general objectives of the programme is to:

- Give an expanded knowledge about Mathematics.
\square Know and demonstrate understanding of the concepts from the five branches of mathematics (number, algebra, geometry and trigonometry, statistics and probability, and discrete mathematics)
\square Use appropriate mathematical concepts and skills to solve problems in both familiar and unfamiliar situations including those in real-life contexts
- Select and apply general rules correctly to solve problems including those in real-life contexts.

b. Relevance of the Programme with Alagappa University's Mission and Goals:

In order to align with the mission and goals of Alagappa University the B.Sc Mathematics is planned to deliver in Distance Learning mode which may reach the maximum number of student aspirants who are unable to thrive to spend non-elastic timings of formal conventional class room education. Such an undergraduate education in Mathematics subject with appropriate practical experiences will enrich the human resources for the uplift of the nation to Educational, Social, Technological, Environmental and Economic Magnificence (ESTEEM).

c. Nature of Prospective Target Group of Learners:

The curriculum has been designed for the learners including a class having of low level of disposable income, rural dwellers, women, unskilled men, minorities etc. to apply mathematical knowledge and problem-solving techniques to investigate a problem, generate and/or analyse information, find relationships and patterns, describe these mathematically as general rules, and justify or prove them through Distance Learning mode. Especially this curriculum will helpful to the learners, who are as workers in shops, factories and house wives etc.

d. Appropriateness of programme to be conducted in Distance learning mode to acquire specific skills and competence:

B.Sc Mathematics programme through Distance Learning mode is developed in order to give subject-specific skills including to:
recognize that mathematics permeates the world around us
\square appreciate the usefulness, power and beauty of mathematics
\square enjoy mathematics and develop patience and persistence when solving problems
\square understand and be able to use the language, symbols and notation of mathematics
\square develop mathematical curiosity and use inductive and deductive reasoning when solving problems
\square become confident in using mathematics to analyse and solve problems both in school and in real-life situations
\square develop the knowledge, skills and attitudes necessary to pursue further studies in mathematics
\square develop abstract, logical and critical thinking and the ability to reflect critically upon their work and the work of others
\square develop a critical appreciation of the use of information and communication technology in mathematics
\square appreciate the international dimension of mathematics and its multicultural and historical perspectives.

The programme is developed to give the students to encourage to share their thinking with teachers and peers and to examine different problem-solving strategies. Critical reflection in mathematics helps students gain insight into their strengths and weaknesses as learners and to appreciate the value of errors as powerful motivators to enhance learning and understanding.

At the end of the Programme students should be able to:
\square Explain whether their results make sense in the context of the problem
\square Explain the importance of their findings
\square Justify the degree of accuracy of their results where appropriate
\square Suggest improvements to the method when necessary.
e. Instructional Design:
e. 1. Curriculum Design:

Sl. No.	Course Code	Title of the Course	$\begin{array}{\|c\|} \hline \text { CIA } \\ \text { Max. } \end{array}$	$\begin{gathered} \hline \text { ESE } \\ \text { Max. } \end{gathered}$	$\begin{aligned} & \hline \text { TOT } \\ & \text { Max. } \end{aligned}$	$\begin{gathered} \text { C } \\ \text { Max. } \end{gathered}$
FIRST YEAR						
I Semester						
1.	11311A / B	Part-I: Tamil Paper-I / Communication Skills-I	25	75	100	4
2.	11312	Part-II : English-I	25	75	100	4
3.	11313	Classical Algebra	25	75	100	4
4.	11314	Calculus	25	75	100	4
		Total	100	300	400	16
II Semester						
5.	11321 A / B	Part-I: Tamil Paper-II / Communication Skills- II	25	75	100	4
6.	11322	Part-II : English-II	25	75	100	4
7.	11323	Analytical Geometry and Vector Calculus	25	75	100	4
8.	11324	Sequences and Series	25	75	100	4
		Total	100	300	400	16
SECOND YEAR						
III Semester						
9.	11331 A /B	Part-I: Tamil Paper-III / Human Skills Development - I	25	75	100	4
10.	11332	Part-II : English-III	25	75	100	4
11.	11333	Differential Equations and its Applications	25	75	100	4
12.	11334	Mechanics	25	75	100	4
		Total	100	300	400	16
IV Semester						
13.	11341 A/ B	Part-I: Tamil Paper-IV / Human Skills Development - II	25	75	100	4
14.	11342	Part-II : English-IV	25	75	100	4
15.	11343	Analysis	25	75	100	4
16	11344	Statistics	25	75	100	4
		otal	100	300	400	16
V Semester						
17.	11351 M	Modern Algebra	25	75	100	4
18.	11352 O	Operations Research	25	75	100	4
19.	11353 N	umerical Analysis	25	75	100	4
20.	11354 T	ransform Technics	25	75	100	4
		otal	100	300	400	16
VI Semester						
	11361 D	Discrete Mathematics	25	75	100	4
	11362 F	uzzy Algebra	25	75	100	4
	11363 C	Complex Analysis	25	75	100	4
	11364 C	Oombinatorics	25	75	100	4
		otal	100	300	400	16
		Grand Total	600	1800	2400	96

Course Code Legend:

$\mathbf{1}$	$\mathbf{1}$	$\mathbf{3}$	\mathbf{X}	\mathbf{Y}	\mathbf{Z}

312- B.Sc Mathematics
X -Semester No
Y \& Z- Course number in the semester

CIA: Continuous Internal Assessment, ESE: End Semester Examination, TOT: Total, C: Credit Points, Max.: Maximum

No. of Credits per Course (Theory) -4
Total No. of Credits per Semester- 16
Total No. of Credits per Programme - 16 X $6=96$

e．2．Detailed Syllabi：

FIRST SEMESTER

Course Code	Title of the Course
11311 A	Part－I：Tamil Paper－I

நோக்கம் ：மொழி அறிவு，இலக்கண அறிவை வளi்த்தல்
பிரிவு－1 ：இசைப்பாடல்

कூ凹1 1

1．கண்ணதாசன்－ரீ கிருஷ்ண கானம்
1．புல்லாங்குழல் கொடுத்த
2．குருவாயூருக்கு வாருங்கள்
கூறு 2
1．கோகுலத்து பசுக்கள்
2．கோகுலத்தில் ஒரு நாள் ராதை
3．ஆயா்பாடி மாளிகையில்

கூறு 3

பட்டுக்கோட்டை கல்யாண சுந்தரம்
1．நெஞ்சில் குடியிருக்கும்
2．செய்யும் தொழிலே தெய்வம்
கூறு 4
1．பாரதியாா்
கண்ணன் என் விளையாட்டுப்பிள்ளை
பாரத மாதா திருப்பள்ளி எழுச்சி
பிரிவு－ 2 ：கவிதை，புதுக்கவிதை
கூறு 5
1．பாரதிதாசன்－உலகப்பன் பாட்டு（5）
2．நாமக்கல் கவிஞi்－நோயற்ற வாழ்வு 7 பாட்டு
3．பெ．தூரன்－நிலா பிஞ்சு
கூ囚ு 6
1．வல்லிக் கண்ணன்－வெறும் புகழ்
2．கு．ப．இராஜகோபாலன்－எதற்காக？
3．மீரா
கூ囚ு 7
1．சிற்பி
ச்ப்ப யாகம்1
2．ஞானக்கூத்தன்

கூறு 8
1．அப்துல் ரகுமான்－கண்ணும் எழுதேம்
2．சண்முக சுப்பையா－வயிறு

1．சிலப்பதிகாரம்
－வழக்குரை காதை
2．கம்பராமாயணம்
－அயோத்தியா காண்டம்

பிரிவு - 4 : காப்பியம்

கூ@ு 10

1. சீறாப்புராணம் - ஈத்தங்குலை வரவழைத்த படலம் (1)

கூ囚ு 11
தேம்பாவணி - காட்சிப்படலம்
பாடல் எண் (ஒவ்வொரு பாடலின் முதல்வரி)

1. இன்னவாயில்
2. கொழுந்துறும்
3. பஞ்(ச) அரங்கில்

கூ@ு 12
தேம்பாவணி - காட்சிப்படலம் பாடல் எண் (ஒவ்வொரு பாடலின் முதல்வரி)
4. எண்ணுளே
5. ஒண்தலங்கள்
6. இரவயயேந்த கஞ்சக்

கூ@ு 13
தேம்பாவணி - காட்சிப்படலம்
பாடல் எண் (ஒவ்வொரு பாடலின் முதல்வரி)
7. கன்னியாயதாயும்
8. ஏந்தி ஓங்கு உளத்து
9. ஆவ தேமுன்
10. கொல்லும் வேலொடும்

கூ@ு 14
தேம்பாவணி - காட்சிப்படலம்
பாடல் எண் (ஒவ்வொரு பாடலின் முதல்வரி)
11. என்ற வாசகம்
12. அம்பினால்
13. வேண்டும் ஓா் வினை

Course Code	Title of the Course
11311 B	Part-I: Communication Skills - I

Objectives:

On completion of the course the students will be able to

* Make students to understand the basic skills of Communication.
* Acquaint students with the important features of Communication skills.

BLOCK I: COMMUNICATION: AN INTRODUCTION

Unit-1: Communication - Meaning - Types- Importance.
Unit-2: Barriers to Effective Communication - Principles - Principles of Effective Communication.

BLOCK II: ORAL COMMUNICATION

Unit-3: Oral Communication - Meaning - Importance - Forms of Oral Communication.
Unit-4: Intonation - Meaning - Function - Types Preparation of Speech- Steps Involved.
Unit-5: Principles of Effective Oral Communication.

BLOCK III: WRITTEN COMMUNICATION

Unit-6: Written Communication - Meaning - Steps - Importance - Advantages - Use of words and Phrases.
Unit-7: Sentence - Meaning - Sentence formation - Characteristics of an Effective Sentence.
Unit-8: Paragraph Writing - Essay Writing - Steps Involved - Outline-Layout - Contents -Drafting-Correction Final Draft.

BLOCK IV: OFFICIAL COMMUNICATION

Unit-9: Application for Employment and Curriculum Vitae - Steps involved.
Unit-10: Non-Verbal Communication - Meaning - Types - Body Language - Postures -Gestures - Facial Expressions - Eye Contact.
Unit-11: Report Writing - Report - Types of Reports - Format of a Report.
Unit-12: Essentials of a Good Report - Preparation of Report - Procedure Involved.
Unit-13: Meetings - Purpose of the Meeting - Procedure.
Unit-14: Group Discussion - Quality of Content - Participation - Logical Presentation - Behavioural Skills.

References:

1. Krishna Mohan \& Meera Banerjee, Developing Communication Skills, 2005.
2. Geetha Nagaraj, Write to Communicate, 2004.
3. Wren \& Martin, English Grammar and Composition, 2002.
4. Dale Carnegie, How to Win Friends and Influence People, 1981.
5. Dale R Jordan, Language Skills and Use.
6. Gartside L. Bahld, Nagammiah and McComas, Satterwhite, Modern Business Correspondence.
7. Rajendra Pal and Kortahalli J S, Essentials of Business Communication.
8. Wallace, Michael J, Study Skills in English.
9. Editors of Readers Digest, Super Word Power.

Course Code	Title of the Course
11312	PART-II : ENGLISH PAPER - I

Learning objective:

1. To make the students master the different topics prescribed in the Prose, Grammar and Composition.

BLOCK I: PROSE I

Unit - I	Water-the Elixir of life	- C.V. Raman
Unit - II	Mrs. Packletide's Tiger	- SAKI
Unit - III	A Deed of Bravery	- Jim Carbett
Unit - IV	The Cat	- Catharine M.Willson
Unit - V	On Letter Writing	- Alpha of the Plough

BLOCK II: PROSE II

Unit - VI	Our Ancestors	- Carl Sagan
Unit - VII	Our Civilization	- C.E.Foad
Unit - VIII	A Hero on Probation	- B.R. Nanda
Unit - IX	Dangers of Drug Abuse	- Hardin B. Fones
Unit - X	Food	- J.B.S. Haldane

BLOCK III:

Unit - XI - Articles-Gerunds-Participles-Infinitives-Modals-Proposition -Tenses.
Unit - XII - Direct and Indirect Speech-Transformation of sentences- Active and passive voice.

BLOCK IV: DEVELOPING WRITING SKILLS

Unit - XIII - Letter writing - Precis writing - Developing hints.
Unit - XIV - Dialogue writing - Paragraph writing.

References:

1. Sebastian D K, Prose for the Young Reader, Macmillan.
2. Active English Grammar, Ed. by the Board of Editors, Macmillan.
3. Modern English - A Book of Grammar Usage and Composition by N.Krishnaswamy, Macmillan Publishers.

Course Code	Title of the Course
$\mathbf{1 1 3 1 3}$	PART-III : CLASSICAL ALGEBRA

Course Objectives:

The general objectives of the course is

1. To introduce the concepts-What is sequence?. Convergent, Divergent and Oscillating sequences.
2. To make the knowledge about Series of positive terms, D'Alembert test, Comparison test, Ratio test, Root test, Conditional convergence and Alternating series.
3. To introduce the concept of Binomial theorem for rational index, Binomial series, Exponential series, Logarithmic series and Summation of series using binomial, exponential and logarithmic series.
4. To understand the concept of Theory of equations, Relation between the roots and coefficients, Symmetric functions of the roots and Sum of the power of the roots of the equation, Removal of terms and Multiple roots.
5. To make the knowledge about Inequalities, Matrices and determinants, Adjoint of a square matrix, system of equations, Cramer's rule, Eigen values.

Course Description:

BLOCK I: SUMMATION OF SERIES AND THEORY OF EQUATIONS

UNIT- I

Introduction, Binomial theorem for rational index, other forms of Binomial Expansion, Summation of series using binomial theorem.

UNIT -II

Theory of equations - Introduction and basic theorems, Relation between the roots and coefficients, Symmetric functions of the roots.

UNIT -III

Sum of the powers of the roots of the equation, Transformation of equation by given quantity, formation of equations whose roots are diminished by h , formation of equations whose roots are equal in magnitude and opposite in sign.

UNIT -IV

Multiple Roots - Nature and position of roots - Descarte's rule of Signs, Rolle's theorem - Sturm's functions - Problems.

BLOCK II: REMOVAL OF TERMS, INEQUALITIES AND DETERMINANTS

UNIT -V

Removal of terms - Introduction, Reciprocal roots, Newton's and Horner's methods. UNIT -VI

Finding number and position of the real roots - Finding the nature and position of the roots (Cardans\&Ferrar's method not included).

UNIT -VII

Inequalities - Arithmetic and geometric means, Weierstrass inequality.

UNIT -VIII

Determinants - Definition, Expansion of determinants, Properties of determinants

BLOCK III: MATRICES AND SYSTEM OF EQUATIONS

UNIT -IX

Matrices- Operation on matrices, adjoint of a square matrix- Problems.

UNIT -X

Singular and Non singular matirices-Inverse of a non-singular matrix.
UNIT -XI
System of equations - Cramer's rule, problems using Cramer's rule-Problems.

BLOCK IV: CONSISTENCY OF EQUATIONS, EIGEN VALUES AND EIGEN VECTORS

UNIT -XII

Rank of a matrix, Consistency of equations-related problems.
UNIT -XIII
Eigen values, Eigen vectors- Some problems
UNIT -XIV
Cayley Hamilton theorem - Statement, Verification of Cayley Hamilton theorem, finding inverse using Cayley Hamilton theorem.

REFERENCES:

1. Arumugam \& Issac, Sequences and Series, New Gamma Publishing House, 2002 Edition.
2. Arumugam \& Issac, Set Theory \& Number System and Theory of Equations.
3. Venkataraman \& Manorama, Algebra, National Publishing House, Chennai.
4. T.K.Manickavasagam Pillai \& Others, Algebra Vol.I \& Vol.II S.Viswanathan (Printers \& Publishers) Pvt. Ltd, 1985-Revised Edition.

Learning Outcomes:

At the end of the module student should be able to...

1. Understand concept of sequences, series and its various types with examples.
2. Understand the types of tests with examples.
3. Understand Binomial theorem, binomial, logarithmic and exponential series and its applications in various fields.
4. Understand theory of equations, inequalities, matrices and determinants with examples and its uses in real world problems.

Course Code	Title of the Course
11314	PART-III : CALCULUS

Course Objectives:

The general objectives of the course is students will be able to:

1. To introduce the concept of Differentiation and Integration. Successive differentiation, Partial differentiation, Maxima and minima of functions of two variables.
2. To make the knowledge about Tangents, normal, curvature, envelope and evolute.
3. To understand the concept of Integration by parts: Definite integrals and their properties, Reduction formulae.
4. To know about Differential equations of homogeneous equations in x and y, First order linear equations, Linear equations of order 2 with constant coefficients.
5. To introduce the concepts of Laplace transform, Inverse Laplace transform, solving differential equations using Laplace transforms. Partial differential equations of first order, some standard forms and Charpit's method.

Course Description:

BLOCK I: DIFFERENTIATION, POLAR CO-ORDINATES AND ASYMPTOTES

UNIT- I

Differentiation - Introduction, Parametric differentiation, Logrithmic differentiation, differentiation of implicit functions.

UNIT -II

Successive differentiation - Introduction, $\mathrm{n}^{\text {th }}$ derivative of some standard functions, problems using higher order derivatives.
UNIT -III
Partial differentiation - Homogeneous functions, Euler's theorem, verification of Euler's theorem, Maxima and minima of functions of one variable and two variables.
UNIT -IV
Polar Coordinates - Radius of curvature in polar coordinates, p-r equation of a curve - Asymptotes - Method of finding asymptotes - problems

BLOCK II: ENVELOPES, EVOLUTES AND INTEGRATS

UNIT -V
Tangents and normal angle of intersection, curvature, Envelopes and Evolutes, working method to find envelope and involutes.

UNIT -VI

Integration - Substitution methods, $1 /\left(x_{2}-a_{2}\right), 1 /\left(x_{2}+a_{2}\right), 1 /\left(a_{2}-x_{2}\right), 1 /\left(x_{2}-a_{2}\right)^{1 / 2},\left(x_{2}\right.$ $\left.-a_{2}\right)^{1 / 2},\left(x_{2}+a_{2}\right)^{1 / 2},\left(a_{2}-x_{2}\right)^{1 / 2}$.

UNIT -VII

Definite Integrals and their properties -problems - Integration by parts - Reduction formulae - Bernoulli's formula.

UNIT -VIII

Double and triple integrals and their properties - Jacobian - Change of order of integration.

BLOCK III: BETA, GAMMA FUNCTIONS AND SOLUTION OF DIFFERENTIAL EQUATIONS

UNIT -IX

Beta and Gamma functions - properties - problems

UNIT -X

Differential equations - Solution of differential equations, variable separable methods.

UNIT -XI

Homogeneous equations in x and y -Methods and problems, First order linear equations.

BLOCK IV: VARIATION OF PARAMETERS, LAPLACE TRANSFORMS AND STANDARD FORMS OF PARTIAL DIFFERENTIAL EQUATIONS UNIT -XII

Linear equations of order 2 with constant and variable coefficients, Variation of parameters.

UNIT -XIII

Laplace transform, Inverse Laplace transform, Solving differential equations using Laplace transforms.

UNIT -XIV

Partial differential equations - Forming differential equations by eliminating arbitrary constants and variables, First order partial order equations. Some standard forms - Charpit's method, Clairaut's form, Lagrange's multiplier method and problems.

REFERENCES:

1. Arumugam \& Issac, Calculus, New Gamma Publishing House, 2005.
2. Arumugam \& Issac, Differential Equations and Applications, New Gamma Publishing House, 2003.
3. A.K.Sharma, Text book of Differential Calculus, Discovery publishing house, New Delhi.
4. S.Narayanan \& T.K. Manickavasagam Pillai, Differential Equations and its applications, S.Viswanathan(Printers \& Publishers) Pvt. Ltd, 2009, Chennai.
5. Calculus and Fourier series by Dr. M.K.Venkataraman and Mrs. Manorama Sridhar, The National Publishing Company, Chennai.

Learning Outcomes:

At the end of the module student should be able to...

1. Understand concept of differentiation, partial differentiation, maxima and minima with examples.
2. Understand tangent, normal, curvature, envelope and evolute with examples.
3. Understand the concept of integration, reduction formulae, definte integral and its properties.
4. Understand Differential equations of homogeneous equations in x and y, First order linear equations, Linear equations of order 2 with constant coefficients.
5. Understand Laplace transform, Inverse Laplace transform, solving differential equations using Laplace transforms, Partial differential equations of first order, some standard forms and Charpit's method with its applications in various fields.

SECOND SEMESTER

Course Code	Title of the Course
11321 A	Part-I: Tamil Paper - II

நோக்கம் : மொழி அறிவு, இலக்கண அறிவை வள்்த்தல்
பிரிவ 1: தேம்பாவணி

கூறு 1

தேம்பாவணி - காட்சிப்படலம்
பாடல் எண் (ஒவ்வொரு பாடலின் முதல்விி)
14. சொல் தவிiா்்த
15. அன்னை
16. அஞ்ச்வாா
17. சொல்லக் கேட்டみள்
18. மற்ดசய்கை
19. மண்கனியப்
20. அழுது ஆ்்்்த

கூறு 2

தேம்பாவணி - காட்சிப்படலம்
பாடல் எண் (ஒவ்வொரு பாடலின் முதல்விி)
21. पபாய் பொதுளும்
22. இன்பு அருந்தி
23. வழுதாயின இன்பு
24. மறம் ஏவியா

Cூறு 3
தேம்பாவணி - காட்சிப்படலம்
பாடல் எண் (ஒவ்வொரு பாடலின் முதல்வfி)
25. மண்ணோ்்கள்
26. பொய்யா விதியோய்
27. விடியா இருள்
28. அழுவா்் எவரும்

பிரிவு 2: சிறுகதை, உரைநமை
कூळு 4
சிறுகதை - நீலபத்மநநபனின் "வான வீதியலல்"
கூறு 5
உரைநடை - கம்பன் புறத்திணை - தி.சொக்கலிங்கம்

பிரிவு 3: இலக்கணம் - எழுத்தும் சொல்லும்

கூறு 6

1. முதலலழுத்துகள், சாா்லபழுத்துகள்
2. மொழி முதலெழுத்துகள் , மொழி இறுதி எழுத்துகள்

கூ@ு 7

1. ஒற்றறழுத்து மிகலும் மிகாமையும்,
2. ஆகு பெயா், அன்மொழித் தொகை.
3. வினா-விடை வகைகள்

कூறு 8

1. தமிழ்ச் சொல்லமைப்பின் சிறப்பு - பெயா், வினை, இடை, உாி வடிவங்கள்,
2. பிற மொழிச் சொற்களைத் தமிழில் ஆளும் முறைகள்

கூறு 9

3. அல் வழி, வேற்றுமைப் புண்ர்ச்சிகள்
4. திணை, பால், எண், இட இயைபு.

பிரிவு 4: தமிழ் இலக்கிய வரலாறு

En@ு 10

1. இக்கால இலக்கிய வகைகள்

அ) மரபுக் கவிதை
ஆ) புதுக் கவிதையின் தோற்றமும் வளா்ச்சியும்

கூறு 11

1. உரை நடை இலக்கியங்கள் - தோற்றமும் வளா்ச்சியும்
அ) கட்டுரை
ஆ) சிறுகதை
இ) புதினம்
ஈ) நாடகம்

கூ囚ு 12

1. இக்கால இலக்கியக் களங்கள்

திரைப்படம், தொலைக்காட்சி, வானொலி, இதழ்கள் தமிழுக்கு ஆற்றி வரும் பணிகள்

கூ@ு 13

1. தமிழும் சமயங்களும் : அ) சைவம் ஆ)வைணவம் இ)சமணம் ஈ)பௌத்தம் உ)இசுலாம் ஊ) கிறித்துவம்

கூறு 14

1. பிற்காலக் காப்பியங்கள் :

அ) கம்பராமாயணம் ஆ) பெரியபுராணம்
2. இணையம் - பற்றிய செய்திகள்

Course Code	Title of the Course
11321 B	Part-I: Communication Skills - II

Objectives:

* To make students understand the basic skills of Communication.
* To acquaint students with the important features of Communication skills.

BLOCK I: INTRODUCTION TO COMMUNICATION SKILLS
Unit-1: Code and Content of Communication Skills.
Unit-2: Stimulus and Response of Communication Skills.
BLOCK II: SPEAKING SKILLS
Unit-3: Effective Speaking Guidelines.
Unit-4: Pronunciation Etiquette of Communication Skills.
Unit-5: Phonetics in Communication Skills.

BLOCK III: LANGUAGE SKILLS

Unit-6: A Self-Assessment of Communicating Soft Skills.
Unit-7: Language Skills - Ability - Skill Selected Need - Learner Centre activities.
Unit-8: Listening Skills - Importance - Types of Listening - Interview Skills.
Unit-9: Conversation Skills - Modes.
Unit-10: Presentation Skills - Preparing - Planning - Presentation.
BLOCK IV: WRITING SKILLS
Unit-11: Written Communication - Structure of Effective Sentences - Paragraph.
Unit-12: Technical Writing - Creative Writing - Editing and Publishing.
Unit-13: Corporate Communication Skills - Internal - Effective business writing -Letters, Proposals, Resume.

Unit-14: Corporal Communication Skills - External - Press release - Newsletters- Interviewing skills.

References:

1. Dutt. Kiranmai \& Geeta Rajjevan. Basic Communication Skills. Rev.ed. Foundation Books Pvt.Ltd. Cambridge House, New Delhi 2006.
2. Bill R. Swetmon. Communication Skills for the $21^{\text {st }}$ Century. Chennai: Eswar Press. First South Asian Edition 2006.
3. Glass. Lillian. Talk to Win. New York: Perigee Books,1987.
4. Pease. Alan. Signals: How to Use Body Language for Power, Success and Love, New York: Bantam Books, 1981.
5. Walters. Lilly. Secrets of Successful Speakers. New York: McGraw-Hill, Inc., 1993.
6. Mandal. S.K. How to Succeed in Group Discussions \& Personal Interviews. Mumbai: JAICO Publishing House.
7. Rogoff. Leonard and Ballenger. Grady. Office Guide to Business Letters, Memos \& Reports. New York: Macmillan, 1994.
8. Krishna Mohan \& Meera Banerjee, Developing Communication Skills, 2005.
9. Geetha Nagaraj, Write to Communicate, 2004.
10. Wren \& Martin, English Grammar and Composition, 2002.

Rajendra Pal and Kortahalli J S, Essentials of Business Communication.

Course Code	Title of the Course
11322	PART-II : ENGLISH PAPER - II

Learning objective:

1. To make the students master the different topics prescribed in the Poetry and Language use Sections.

BLOCK I: POETRY - I

Unit - Sonnet - William Shakespeare
Unit - II Lines Composed upon Westminster Bridge
-William Wordsworth
$\begin{array}{lll}\text { Unit - III } & \text { Grecian Urn } & \text { - John Keats (1795-1827) } \\ \text { Unit - IV } & \text { Andrea Del Sarto } & \text { - Robert Browning (1812-1889) }\end{array}$
BLOCK II: POETRY - II

Unit - V	The Road Not Taken	- Robert Frost (1874-1963)
Unit - VI	Strange Meeting	- Wilfred Owen (1813-1918)
Unit - VII	Gitanjali	- Rabindranath Tagore (1861-1946)
Unit - VIII	The Coromandel Fishers	- Sarojini Naidu
Unit - IX	The Express	- Stephen Spender

BLOCK III: DRAMA

Unit - X Shakespeare : The Merchant of Venice

BLOCK IV: DEVELOPING LANGUAGE SKILLS

Unit - XI Essay writing
Unit - XII Note Making
Unit - XIII Report writing
Unit - XIV Comprehension

References:

1. The Golden Quill, P.K. Seshadri, Macmillan.
2. The Merchant of Venice, Shakespeare. (Any overseas edition).
3. Active English Grammar, Ed. by the Board of Editors, Macmillan.
4. Modern English - A Book of Grammar Usage and Composition by N.Krishnaswamy, Macmillan Publishers.

Course Code	Title of the Course
11323	PART-III : ANALYTICAL GEOMETRY AND VECTOR CALCULUS

Course Objectives:

The general objectives of the course is
students will be able to:

1. Understand and appropriately use the technical vocabulary of the topics covered such as vector, vector-valued function, tangent vector, space curve, tangential components, normal components, neighborhood in the plane, gradient, angle of inclination, iterated integral, double integral, triple integral, Lagrange multipliers, and Jacobian
2. Perform vector operations and interpret the results geometrically.
3. Use vectors to solve problems involving force, velocity, work, and real-life problems and analyze vectors in space
4. Find the angle between two vectors using the dot product
5. Find the direction cosines and cross product of two vectors in space
6. Use the triple scalar product of three vectors in space
7. Find the distance between points, planes, and lines in space
8. Recognize and write equations for different surfaces
9. Use cylindrical and spherical coordinates to represent surfaces in space, analyze and sketch a space curve given by a vector-valued function
10. Differentiate and integrate a vector-valued function.
11. Understand Divergent, Curl, Vector integration, Line integral, Problems using Greens' theorem, Stokes' theorem and Guass theorem.

Course Description:

BLOCK I: STRAIGHT LINES, SYSTEM OF CIRCLES AND DIRECTION COEFFICIENTS

UNIT -I

Two dimension analytical geometry - Pair of straight lines, angle between pair of lines-Problems.
UNIT -II
Circle, System of circles, Radical axis- co axal system of circles.
UNIT -III
Polar coordinates-Equation of line in polar co-ordinates - Pole and polar conics.

UNIT -IV

Three dimension analytical geometry - Introduction, Direction ratios and direction coefficients - angle between the lines

BLOCK II: PLANES AND CONES

UNIT -V

Plane - Plane equation - Angle between two planes - Length of the perpendicular Distance between two planes

UNIT -VI

Straight lines-Equation of a straight line in various forms - problems - Image of a point, Image of a line about a plane.

UNIT -VII

Plane and straight lines - Coplanar lines-Problems.

UNIT -VIII

Cone - Definition - Equation of the Cone in various forms - Equation of a right circular Cone-problems

BLOCK III: CYLINDER AND SPHERE

UNIT -IX

Cylinder - Definition - Equation of a right circular cylinder - simple problems.

UNIT -X

Skew lines - Shortest distance between two skew lines - Problems

UNIT -XI

Sphere - Equation of a sphere, Tangent plane - Problems

BLOCK IV: VECTOR DIFFERENTIATION, LINE AND SURFACE

INTEGRALS

UNIT -XII

Equation of a circle on a sphere - Intersection of two spheres.

UNIT -XIII

Vector Calculus - Vector Differentiation- Vector Algebra - Differentiation of vectors - Gradient - Divergence and Curl - Solenoidal - irrotational - Harmonic Vector.

UNIT -XIV

Line and Surface Integrals - Line Integrals - Surface Integrals - Theorems of GREEN, GAUSS and STOKE'S(Statements only) problems.

REFERENCES:

1. Arumugam \& Issac, Analytical Geometry 3D and Vector Calculus.
2. Analytical Geometry 3D and Vector Calculus by Dr. M.K.Venkataraman and Mrs. Manorama Sridhar, National Publishing Company, Chennai, 2001..
3. T.K. Manickavasagam Pillai \& T.Natarajan, A text book of Analytical Geometry Part II3D, S.Viswanathan(Printers \& Publishers) Pvt. Ltd., 2001.
4. S.Narayanan \& T.K. Manickavasagam Pillai, Vector Algebra \& Analysis, S.Viswanathan(Printers \& Publishers) Pvt. Ltd. 1995.

Learning Outcomes:

After the completion of the course the student will be able to:

1. Understand the distance between points, the distance from a point to a line, and the distance from a point to a plane in the three-dimensional coordinate system.
2. Sketch and describe regions in space and perform algebraic operations with vectors in two and three dimensions.
3. Find the length of a vector and compute dot and cross product of vectors.
4. Find scalar and vector projections of a vector onto another and the angle between two vectors.
5. Determine if vectors are parallel and orthogonal and determine if a vector field is conservative and find a potential function if conservative.
6. Evaluate line integrals in the plane and in space, including line integrals of vector fields.
7. Use the Fundamental Theorem of Line Integrals and determine if a line integral is independent of path.
8. Use Green's, Stoke's and Gauss theorem and compute the curl and divergence of a vector field.

Course Code	Title of the Course
$\mathbf{1 1 3 2 4}$	PART-III : SEQUENCES AND SERIES

Course Objectives:

The general objectives of the course is
students will be able to:

1. Define sequences and identify the different kinds of sequences.
2. Find the nth term or the general term of a sequence for which some initial terms are given.
3. Find the types of sequence and series with suitable examples.
4. Find the common ratio of a geometric sequence.
5. Find arithmetic means, harmonic means and geometric means.
6. Find the sum of a finite arithmetic series, harmonic series and geometric series.
7. Find the sum of an infinite geometric series.
8. Find the tests such as Comparison test, Kummer's test, Root test, Cauchy's condensation Test, Cauchy's root test.

Course Description:

BLOCK I: CONVERGENT AND DIVERGENT OF SEQUENCES AND ALGEBRA OF LIMITS
UNIT -I
Sequences - bounded sequences - Monotonic sequences.
UNIT -II
Convergent sequences - Cauchy's general principle of convergence - Cauchy's first theorem on Limits.

UNIT -III

Divergent and Oscillating sequences - Some problems.
UNIT -IV
The algebra of limits- Limit superior and Limit inferior.

BLOCK II: MONOTONE AND CAUCHY SEQUENCES AND SERIES OF POSITIVE TERMS

UNIT -V
Behaviour of monotonic sequences - Some Theorems on limits

UNIT -VI

Subsequences - limit points -Some problems.

UNIT -VII

Cauchy sequences - The upper and lower limits of a sequence.

UNIT -VIII

Series of positive terms -infinite series - Some related problems.

BLOCK III: TYPES OF TESTS AND ALTERNATING SERIES

UNIT -IX

Comparison test - Kummer's test - Root test - Simple problems
UNIT -X
Cauchy's condensation Test, Cauchy's root test and their simple problems - Integral test - Problems.

UNIT -XI
Series of arbitrary terms - Alternating series - Problems.

BLOCK IV: TEST FOR CONVERGENCE AND SUMMATION OF SERIES

UNIT -XII

Absolute convergence - Tests for convergence of series of arbitrary terms

UNIT -XIII

Rearrangement (Derangement) of Series - Multiplication of series.

UNIT -XIV

General summation of series including successive difference and recurring series.

REFERENCES:

1. Sequences and Series by Dr. S.Arumugam and Prof. A.ThangapandiIssac, New Gamma Publishing House, Palayamkottai, December 2015.
2. M.K.Singal \& Asha Rani Singal, A first course in Real Analysis, R. Chand \& Co. 1999.
3. Dr.S.Arumugam, Sequences \& Series, New Gamma Publishers, 1999.

Learning Outcomes:

At the end of the module student should be able to...
a. Work within an axiomatic framework.
b. Understand how Cauchy's criterion for the convergence of real and complex sequences and series follow from the completeness.
c. Understand concept of sequences, series and its various types with examples.
d. Understand the types of tests with examples.
e. Understand how the elementary functions can be defined by power series, with an ability to deduce some of their easier properties.
f. Understand behavior of monotone sequences and its applications in various fields.
g. Understand theory of equations, inequalities, matrices and determinants with examples and its uses in real world problems

B.Sc MATHEMATICS
 THIRD SEMESTER

Course Code	Title of the Course
11331 A	Part-I: Tamil Paper - III

நோக்கம் : மொழி அஷிவு, இலக்கண அறிவை வளiத்தல்

பிரிவு 1: இலக்கியம் - 1

கூறு 1: பத்துப்பாட்டு - முல்லைப்பாட்டு
கூறு 2: எட்டுத்தொகை - ஐங்குறுநூறு
கூறு 3: கபிலiா - குறிஞ்சித்திணை
கூறு 4: மஞ்ஞைப்பத்து - முதல் மூன்று பாடல்கள்
கூறு 5: குறுந்தொகை - பரணா் பாடல்கள் பा. எண். 19, 24, 36, 128, 399
பிரிவு 2: இலக்கியம் - 2

கூறு 6: நந்றிறை - பெருங்குன்றூாா்கிழா்
பெருவழுதியாா்
பெருங்கௌசிகனா்
கூறு 7: நற்றிணை - கருவூர்க்கோசிகனா்்
உலோச்சனா்்

- பா. எண். 5
- பा. எண். 55
- பा. எண். 139
- பा. எண். 214
- பा. எண் 249

கூறு 8: அகநானூறு - சேந்தம்பதனா் பாடல்கள் பா.எண். 84, 207
கூறு 9: புறநாறூறு - மறோக்கத்து நப்பசலையாா் பாடல்கள்
பா. எண். 37, 39, 126, 226, 280

பிரிவு 3: பதினெண்கீழ்க்கணக்கு

கூறு 10: பதினெண் கீழ்க்கணக்கு - திருக்குறள் - வாழ்க்கைத் துணை நலம் (6), அறிவுடைமை (43), பிரிவாற்றாமை (116)

சூறு 11: நான்மணிக்கடிகை - எள்ளற்க (3), பறைபடவாழா (4),
கூறு 12: நான்மணிக்கடிகை - மண்ணயறிப (5),கள்ளிவயிற்றில் (6), கல்லிற்பிறக்கும்(7)
பிரிவு 4: நாடகம் - புதினம்
கூ@1 13: நாடகம் - இராசராசசோழன் - அரு. இராமநாதன்
கூறு 14: நாவல் - சுவடுகள் - இரா. பாலசுப்பிரமணியன், சத்யா வெளியீடு, மதுரை.

Course Code	Title of the Course
11331 B	Part-I: Human Skills Development - I

Objectives:

- To Make the Students develop human skills.

BLOCK I: HUMAN SKILLS AND HABITS

Unit-1: Human Skills - Developing skills - Types.
Unit-2: Mind-Levels of functions - Habits - Meaning - Types - Merits of good habits - Interpersonal Relationship - Features - Interpersonal Behaviour.

BLOCK II: PERSONALITY AND SELF CONCEPT

Unit-3: Thinking ahead - Significance of thinking ahead.
Unit-4: Developing Personality - Meaning - Need - Factors influencing personality, Ways of developing personality - Building positive personality.

Unit-5: Self-concept - Self-esteem - Meaning-Importance - Self-efficacy - Self-acceptance -MeaningImportance - Etiquette - Meaning - Etiquettes in using mobile, telephones - Dais Etiquette.

BLOCK III: TYPES OF SKILLS

Unit-6: Goal - setting Skills - Meaning - Types - Importance.
Unit-7: Decision-making skills - Meaning - Types - Steps in decision-making
Unit-8: Negotiating Skills - Styles - Structure - Creating negotiation - Competitive Negotiation.

BLOCK IV: HUMAN RELATIONS

Unit-9: Attitudes - Meaning - Types - Importance - Developing positive attitudes.
Unit-10: Coping with Change - Meaning - Characteristics - Importance of change Resistance to change - Dealing with change.
Unit-11: Leadership - Meaning - Importance - Characteristics - Styles.
Unit-12: Human Relations Skill - Need - Canons of good human relations.
Unit-13: Counselling - Meaning - Importance - Forms - Conflicts - Meaning - Types - Causes - Effects Managements of conflicts
Unit-14: Stress-Meaning - Types - Causes - Effects - Managing the stress - Anger - Meaning - Causes Consequences - Anger Management.

References:

1. Les Giblin, Skill with People, 1995.
2. Shiv Khera, You Can Win, 2002.
3. Christian H Godefroy, Mind Power.
4. Dale Carnegie, How to Enjoy Your Life and Your Job, 1985.
5. Natalie H Rogers, How to Speak without Fear, 1982.
6. Dale Carnegie, How to Develop Self-Confidence and Influence People by Public Speaking.

Course Code	Title of the Course
11332	PART-II : ENGLISH PAPER - III

Learning objective:

1. To make the students master the different topics prescribed in the Short Stories, One Act Plays, Grammar and Composition.

BLOCK I: SHORT STORIES

Unit - I	A Hero	- R.K. Narayanan
Unit - II	The Diamond Necklace	- Guy de Maupassant
Unit - III	The Verger	- Somerset Maugham
Unit - IV	The Postmaster	- Rabindranath Tagore
BLOCK	II:	ONE ACT PLAYS - I

Unit - V	The Proposal	- Anton Chekhou
Unit - VI	The Boy Comes Home	- A.A. Milne
Unit - VII	The Silver Idol	- James R. Waugh
Unit - VIII	Progress	- St. John Ervine

BLOCK III: ONE ACT PLAYS - II

Unit - IX The Pie and the Tart - Huge Chesterman
Unit - Reunion - W.st. Joh Tayleur
Unit - XI A kind of Justice - Margaret Wood
Unit - XII The Refugee - Asif Currimbhoy

BLOCK IV: GRAMMAR AND COMPOSITION

Unit - XIII Parts of speech-Noun- Pronoun- Adjective
Degrees of Comparison- Verb- Adverb
Unit - XIV Agenda- Minutes- Notice- Descriptive Writing

REFERENCES:

1. Aroma, Ed. by the Board of Editors, Publishers- New Century Book House, Chennai.
2. Six Short Stories, Ed. by the Board of Editors, Harrows Publications, Chennai.
3. One Act Plays, Ed. by the Board of Editors, Harrows Publications, Chennai.
4. Modern English - A Book of Grammar Usage and Composition by N.Krishnaswamy, Macmillan Publishers.
5. English for Communication, Ed. by the Board of Editors, Harrows Publications, Chennai.

Course Code	Title of the Course
11333	PART-III : DIFFERENTIAL EQUATIONS AND ITS APPLICATIONS

Course Objectives:

The general objectives of the course is
students will be able to:

1. Identify an ordinary differential equation and its order
2. Verify whether a given function is a solution of a given differential equation (as well as verifying initial conditions when applicable)
3. Classify ordinary differential equations into linear and nonlinear equations
4. Solve first order linear differential equations
5. Find solutions of separable differential equations
6. Model population dynamics using first order autonomous equations 8. Apply first order equations to problems in elementary dynamics
7. Find solutions of exact equations 10 . Find the general solution of second order linear homogeneous equations with constant coefficients
8. Understand the notion of linear independence and the notion of a fundamental set of solutions
9. Use the method of reduction of order to find a second linearly independent solution of a second order, linear homogeneous equation when one solution is given
10. Use the method of undetermined coefficients to solve second order, linear homogeneous equations with constant coefficients
11. Use the method of variation of parameters to find particular solutions of second order, linear homogeneous equations
12. Use second order linear equations with constant coefficients to model mechanical vibrations

Course Description:

BLOCK I: EXACT, HOMOGENEOUS AND LINEAR DIFFERENTIAL EQUATIONS

UNIT - I

Exact Differential Equations - Conditions for equation to be exact -Working rule for solving it - problems
UNIT - II
Equations of the first order but of higher degree - Equations solvable for $\mathrm{p}, \mathrm{x}, \mathrm{y}$, clairaut's form-Equations that do not contain (i) x explicitly (ii) y explicitly.

UNIT - III

Equations homogenous in x and y - Linear Equation with constant coefficients- Problems.
UNIT- VI
Linear equations with variable coefficients - Equations reducible to the linear equations.
BLOCK II: SIMULTANEOUS AND TOTAL DIFFERENTIAL EQUATIONS
UNIT - V
Simultaneous Differential Equations - First order and first degree - Simultaneous linear Differential Equations.
UNIT - VI
Linear equations of the second order - Complete Solution given a nown integral-Problems.
UNIT - VII
Reduction to Normal form - Change of the independent variable-Problems.
UNIT - VIII
Variation of parameters - Total Differential Equations - Problems.

BLOCK III: PARTIAL DIFFERENTIAL EQUATIONS

UNIT - IX

Necessary and Sufficient condition of integrability of Pdx $+\mathrm{Qdy}+\mathrm{Rdz}=0$ -Rules - Problems.
UNIT - X
Partial Differential Equations of the First oder - classifications of integrals
UNIT - XI
Derivations of Partial Differential Equations - Special methods - Problems.
BLOCK IV: STANDARD FORMS OF PARTIAL DIFFERENTIAL EQUATIONS AND TRAJECTORIES

UNIT - XII:
Standard forms of partial differential equations - charpit's method-problems
UNIT - XIII
Flow of water from an Orifice - Falling bodies and other rate problems -
Brachistochrone Problem
UNIT- XIV
Tautochronous property of the Cycloid - Trajectories-Problems.

REFERENCE BOOKS:

1. Differential Equations and its Applications by S.Narayanan\&T.K.ManickavachagomPillay, S.Viswanathan (Printers\& Publishers) Pvt. Ltd., 2015.
2. Differential Equations and its Applications by Dr. S.Arumugam and Mr. A.Thangapandi Issac, New Gamma Publishing House, Palayamkottai, Edition, 2014.

Learning Outcomes:

At the end of the module student should be able to..

1. Identify an ordinary differential equation and its order
2. Verify whether a given function is a solution of a given ordinary differential equation (as well as verifying initial conditions when applicable)
3. Classify ordinary differential equations into linear and nonlinear equations
4. Solve first order linear differential equations
5. Find the general solution of second order linear homogeneous equations with constant coefficients
6. Understand the notion of linear independence and the notion of a fundamental set of solutions
7. Use the method of reduction of order to find a second linearly independent solution of a second order, linear homogeneous equation when one solution is given
8. Use the method of undetermined coefficients to solve second order, linear homogeneous equations with constant coefficients
9. Use the method of variation of parameters to find particular solutions of second order, linear homogeneous equations
10. Find the applications of Differential Equations in various fields with suitable examples.

Course Code	Title of the Course
$\mathbf{1 1 3 3 4}$	PART-III : MECHANICS

Course Objectives:

The general objectives of the course is students will be able to:

1. Draw complete and correctly labeled Free Body Diagrams of rigid bodies or systems of rigid bodies in static equilibrium, ability to compute the resultant of any number of concurrent forces in 2- or 3- dimensions.
2. Compute the dot product and cross product of two vectors, and demonstrate, understanding of the meaning of the results.
3. Solve particle equilibrium problems in 2- or 3- dimensions, ability to compute the moment generated by a force about any point in 2-D space and ability to find support reactions for truss and frame/machine problems.
4. Reduce a system of forces acting on a rigid body to a single equivalent force and compute its point of application.
5. Solve rigid body equilibrium problems in 2- or 3-dimensions for statically determinate systems, ability to compute frictional forces for sliding motion and for belts/pulleys.
6. Solve the tip/slip problem, ability to compute the centroid and the area moment of inertia of 2-D bodies using the method of composite areas.
7. Construct shear force and bending moment diagrams for systems of concentrated forces and/or distributed loads acting on statically determinate beams.
8. Solve for the internal forces acting on any member of a pin-jointed truss structure or a frame/machine component.
9. Find the centroid and area moment of inertia for 2-D shapes by the method of integration and ability to compute the moment about any axis in 3-D space generated by a force or a system of forces.
10. Find friction, coefficient of friction, angle of friction, cone of friction, path of projectiles is a parabola, range of a particle projected on a incline plane, Impact, Impulses, Impact in a fixed plane, direct and oblique impact.
11. Find equation of motion, composition of S.H.M's Central orbits, components of velocity and acceleration along and perpendicular to the radius vector and differential equation of a central-pedal equation.

Course Description:

BLOCK I: LOW OF FORCES AND RESULTANT OF FORCES

UNIT -I

Forces acting at a point - Resultant and Components - Definition - Simple cases of finding the resultant - Parallelogram law of forces - Analytical Expression for the resultant of two forces acting at a point

UNIT -II

Triangle of forces - Perpendicular Triangle of forces - Converse of Triangle of forces.

UNIT- III

The polygon of forces - Lami's Theorem - An Extended form of the parallelogram law of forces

UNIT -IV

Resolution of a force - Theorems on resolved parts - Resultant of any number of coplanar forces - Condition of equilibrium.

BLOCK II: PARALLEL FORCES, COUPLES AND FRICTIONS

UNIT -V

Forces acting on a rigid body: Parallel forces - Resultant of two like and unlike parallel forces - Moment of a force - Varigon's theorem
UNIT -VI
Couples- Equivalence of two couples- couples in parallel planes-Resultant of a couple and aplane.
UNIT -VII
Three forces acting on as rigid body -Three coplanar forces, conditions of equilibrium- two trigonometrical theorems and simple problems.

UNIT -VIII

Friction- Statical, dynamical and limiting friction-Laws of friction -Coefficient of friction - Angle of friction - Cone of friction - Problems.

BLOCK III: CATENARY, PROJECTILES AND IMPULSIVE FORCES

UNIT -IX

Uniform string under the action of gravity - Equation of the common catenary - axis, vertex, directrix, span and sag - Tension at any point - Important formulae - Geometrical properties of the Common Catenary
UNIT -X
Projectile - Definition - fundamental principles - path of the projectile Characteristics of the motion of a projectile - Range on an inclined plane - greatest distance maximum range
UNIT -XI
Impulsive force - Impulse - Impact of two bodies - Loss of Kinetic energy in Impact - Collision of elastic bodies - Fundamental laws of Impact - Newton's experimental law Impact of a smooth sphere on a fixed smooth plane,

BLOCK IV: IMPACT OF SPHERES, SIMPLE HORMOMIC MOTION AND CENTRAL ORBITS

UNIT -XII

Direct Impact of two smooth spheres - Loss of kinetic energy due to direct impact Oblique impact of two smooth spheres - Loss of kinetic energy due to oblique impact.

UNIT -XIII

Motion under the action of Central forces - S.H.M - Equation of motion - Velocity and acceleration - Equation of motion in Polar Coordinates - Note on equiangular spiral Motion under a central force

UNIT -XIV

Central Orbits - Differential Equation of Central Orbits - Perpendicular from the pole on the tangent. Formulae in Polar Coordinates - Pedal Equation of the central orbit - Pedal equation of some of the well known curves - Velocities in a central orbit - Two folded problems.

REFERENCE BOOKS:

1. Dr. M.K. Venkataraman, Statics, Agasthiar Publications, 17 ${ }^{\text {th }}$ Edition, 2014.
2. Dr. M.K. Venkataraman, Dynamics, Agasthiar Publications, $13^{\text {th }}$ Edition, 2009.
3. P. Duraipandian, Laxmi Duraipandian \& Muthamizh Jayapragasam, Mechanics, S.Chand \& Co. Pvt. Ltd, 2014.

Learning Outcomes:

At the end of this course student will be able to...

1. Get the knowledge of the principles ofstatics.
2. Construct free-body diagrams.
3. Understand the statical analysis of trusses, frames and machines.
4. Acquire the knowledge of internal forces in members.
5. Calculate centroids and moments of inertia.
6. Know about friction and laws of friction.
7. Get a knowledge of the general principles of dynamics.
8. Acquire a knowledge of kinematic and kinetic analysis of particles and systems of particles.
9. Get the knowledge of momentum methods, energy methods for particles and systems of particles.
10. Understand kinematic and kinetic analysis, momentum methods and energy methods of rigid bodies.
11. Understand projectiles, S.H.M, central orbits, velocity, acceleration and differential equation of a central-pedal equation.

FOURTH SEMESTER

Course Code	Title of the Course
11341 A	Part-I: Tamil Paper - IV

நோக்கம் : மொழி அறிவு, இலக்கண அறிவை வளiத்தல்
பிரிவு 1: செய்யுள் உறுப்புகள்
कூறு 1: செய்யுள் உறுப்புகள் - யாப்பு - எழுத்து, அசை, சீா,
கூறு 2: செய்யுள் உறுப்புகள் - யாப்பு - தளை, அடி, தொடை
கூறு 3: வெண்பா, ஆசிரியப்பா, கலிப்பா, வஞ்சிப்பா,
கூறு 4: புதிய யாப்பு வடிவங்கள் - சிந்து, கண்ணி, கீாத்தனை
கூறு 5: புதுக்கவிதையில் குறியீடு - படிமம்.

பிரிவு 2: அகப்பொருள் - புறப்பொருள்

சூறு 6: அகப்பபாருள் - புறப்பொருள் - ஐந்திணை விளக்கம்
கூறு 7: அகப்பொருள் துறைகள் - வரைவு கடாதல், அறத்தொடு நிற்றல், உடன்போக்கு

கூறு 8: புறப்பொருள் துறைகள் - வஞ்சினக்காஞ்சி, கையறுநிலை, செவியறிவுறூஉ

பிரிவு 3: அணி

கூறு 9: அணி இலக்கணம் - உவமை, உருவகம், வேற்றுமை, பிறிது மொழிதல், தற்குறிப்பேற்றம், சிலேடை, பின்வருநிலை.
சூ@ு 10: நிறுத்தல் குறிகள்.

பிரிவு 4: காப்பியம் - சங்க இலக்கியம்

கூறு 11: தொல்காப்பியம் - சங்கஇலக்கியம் - எட்டுத்தொகை, பத்துப்பாட்டு,
கூณு 12: பதினெண்கீழ்க்கணக்கு.
கூறு 13: ஐம்பபருங்காப்பியங்கள் - பி்்காலக் காப்பியங்கள் - கம்பராமாயணம் பெரியபுராணம்.

கூறு 14: இக்காலக் காப்பியங்கள் - பாரதியின் பாஞ்சாலி சபதம் - பாரதிதாசனின் பாண்டியன் பரிசு - கண்ணதாசனின் இயேசு காவியம் , சிற்பியின் - மௌன மயக்கங்கள்.

Course Code	Title of the Course
11341 B	Part-I: Human Skills Development - II

Objective:

To Make the Students develop human skills.

BLOCK I: GUIDENCE AND COUNSELLING

Unit - I Guidance \& Counselling - Role of Counsellor - Importance and Techniques of counselling

Unit - II Managerial skill- Need - Importance
Unit - III Human relational skills-Communication-Attention

BLOCK II: TECHNICAL SKILLS

Unit - IV Conceptual skills-Meaning-Importance
Unit-V Technical skills-Techniques-Practices-Tools-Procedures
Unit - VI Presentation skills-Planning-Preparation-Delivery
Unit - VII Organization skills-Meaning-Nature-Importance-Types
Unit - VIII Multi-Tasking skills Responsibilities-Causes
Unit - IX Leader- Qualities of a good leader

BLOCK III: UNDERSTANDING SKILLS

Unit - X Understanding Skills -Human systems: Individual, Group, organization, and their major interactions

Unit - XI Understanding Skills -Human systems: Community and Society, and their major interactions

BLOCK IV: SOCIETY BASED SKILLS

Unit - XII Problem solving skills - Handling -Facing - Importance
Unit - XIII Cooperative Learning Skills
Unit - XIV Making Social Responsibilities-Causes

References:

1. Les Giblin, Skill with People, 1995.
2. Shiv Khera, You Can Win, 2002.
3. Christian H Godefroy, Mind Power.
4. Dale Carnegie, How to Enjoy Your Life and Your Job, 1985.
5. Natalie H Rogers, How to Speak without Fear, 1982.
6. Dale Carnegie, How to Develop Self-Confidence and Influence People by Public Speaking.

Course Code	Title of the Course
11342	PART-II : ENGLISH PAPER - IV

Learning objective:

1. To make the students master the different topics prescribed in the Short Stories, Drama, Fiction, Tales from Shakespeare, Biographies, Grammar and Composition.

BLOCK I: SHORT STORIES

Unit - I	Lalajee	- Jim Corbelt
Unit - II	A Day's Wait	- Hemmingway
Unit - III	Two old Men	- Leo Tolstoy
Unit -IV	Little Girls wiser than	- Men Tolstoy
Unit - V	Boy who wanted more Cheese	- William Elliot Griffir

BLOCK II: DRAMA AND FICTION

Unit - VI	Pygmalion	- G.B. Shaw
Unit - VII	Swami and Friends	- R.K. Narayanan

BLOCK III: SHAKESPEARE

Unit - VIII - The Merchant of Venice
Unit - IX - Romeo and Juliet
Unit - X - The Winter's Tale

BLOCK IV: BIOGRAPHIES, GRAMMAR AND COMPOSITION

Unit - XI - Martin-Luther king - R.N. Roy

Unit - XII - Nehru - A.J. Toynbee
Unit - XIII - Concord- Phrases and Clauses-Question Tag
Unit - XIV - Expansion of Proverbs

- Group Discussion
- Conversation (Apologizing, Requesting, Thanking)

REFERENCES:

1. Sizzlers, by the Board of Editors, Publishers- :Manimekala Publishing House, Madurai.

2 Pygmalion-G.B. Shaw
3. Swami and Friends - R.K. Narayan
4. Tales from Shakespeare Ed. by the Board of Editors, Harrows Publications, Chennai.
5. Modern English - A Book of Grammar Usage and Composition by N.Krishnaswamy, Macmillan Publishers.

Course Code	Title of the Course
$\mathbf{1 1 3 4 3}$	PART-III : ANALYSIS

Course Objectives:

The general objectives of the course is students will be able to:

1. Introduce the fundamentals of mathematical analysis and to reading and writing mathematical proofs.
2. Use results and techniques involving these concepts to solve a variety of problems, including types of problems that they have not seen previously.
3. Know how completeness, continuity, and other notions are generalized from the real line to metric spaces and appreciate the Contraction Principle in abstract metric space theory as a powerful tool to solve concrete problems.
4. Analyze the use the concept of convergence of sequences of functions and series of functions.
5. To attain a basic level of competency in developing their own mathematical arguments and communicating them to others in writing.

Course Description:

BLOCK I: SET, FUNCTIONS AND METRIC SPCES

UNIT -I

Introduction - Sets and functions - Countable and Uncountable sets - Inequalities of Holder and Minkowski.
UNIT -II
Metric spaces: Definition and examples - Limits in metric spaces - Continuous functions on metric spaces.
UNIT -III
Functions continuous at a point in the real line - Reformulation -Bounded sets in Metric space- Problems.

UNIT -IV

Subspace - Interior of a set - Open sets- Closed sets - Closure - limit point - Dense sets -Problems

BLOCK II: CONTINUITY AND POWER SERIES

UNIT -V

Complete Metric spaces: Introduction- Completeness - Baire's Category theorem.

UNIT -VI

Continuity - Homeomorphism - Uniform continuity.

UNIT- VII

Differentiability of a function -Derivability \& Continuity -Algebra of derivatives Inverse Function Theorem - Daurboux's Theorem on derivatives.

UNIT -VIII

Rolle's Theorem -Mean Value Theorems on derivatives- Taylor's Theorem with remainder- Power series expansion .

BLOCK III: INTEGRAL FUNCTIONS AND CONTRACTION MAPPING THEOREM UNIT - IX

Riemann integration -definition - Daurboux's theorem -conditions for integrability Integrability of continuous \& monotonic functions.
UNIT - X
Integral functions -Properties of Integrable functions - Continuity \& derivability of integral functions -The First Mean Value Theorem and the Fundamental theorem of Calculus.
UNIT -XI
Contraction mapping - Definitions and Examples - Contraction mapping theoremApplications.

BLOCK IV: CONNECTED AND COMPACT METRIC SPACES

UNIT - XII

Connectedness: Introduction - Connectedness definition and examples- Connected subsets of R-Connectedness and Continuity.

UNIT - XIII

Compactness: Introduction- Compact metric spaces - Continuous functions on compact metric spaces - Continuity of the inverse function - Uniform continuity.

UNIT - XIV

Sequence of functions and Series of functions- Pointwise convergent-Cauchy criterion for uniform convergence.

REFERENCE BOOKS:

1. Arumugam \& Issac, Modern Analysis, New Gamma Publishing House, Palayamkottai, 2010.
2. Richard R. Goldberg, Methods of Real Analysis, Oxford \& IBH Publishing Company, New Delhi.
3. D.Somasundaram \& B.Choudhary, A first course in Mathematical Analysis, Narosa Publishing House, Chennai.
4. M.K,Singhal \& Asha Rani Singhal , A First Course in Real Analysis, R.Chand \& Co., June 1997 Edition.
5. Shanthi Narayan, A Course of Mathematical Analysis, S. Chand \& Co., 1995

Learning Outcomes:

After completion of this course the students will:

1. Define the real numbers, least upper bounds, and the triangle inequality.
2. Define functions between sets; equivalent sets; finite, countable and uncountable sets. Recognize convergent, divergent, bounded, Cauchy and monotone sequences.
3. Calculate the limit superior, limit inferior, and the limit of a sequence.
4. Recognize alternating, convergent, conditionally and absolutely convergent series.
5. Apply the ratio, root, limit and limit comparison tests.
6. Define metric and metric space.
7. Determine if subsets of a metric space are open, closed, connected, bounded, totally bounded and/or compact.
8. Determine if a function on a metric space is discontinuous, continuous, or uniformly continuous.

Course Code	Title of the Course
$\mathbf{1 1 3 4 4}$	PART-III $\boldsymbol{:}$ STATISTICS

Course Objectives:

The general objectives of the course is students will be able to:

1. Organize, present and interpret statistical data, both numerically and graphically use various methods to compute the probabilities of events.
2. Analyze and interpret statistical data using curve fitting.
3. Construct correlation and regression table for finding missing datas.
4. Organize and interpret Index numbers in various applications.
5. Perform parameter testing techniques, including single and multi-sample tests for means, standard deviations and proportions.
6. Perform a time series analysis using time series components.

Course Description:

BLOCK I: MEAN, MEASURES OF DISPERSION AND MOMENTS

UNIT- I

Central Tendencies - Introduction - Arithmetic Mean - Partition Values - Median-
Mode

UNIT- II

Geometric Mean and Harmonic Mean - Related problems

UNIT- III

Measures of Dispersion-Problems.

UNIT- IV

Moments - Skewness and Kurtosis

BLOCK II: CURVE FITTING, CORRELATION AND REGRESSION

UNIT-V

Curve fitting - Goodness of fit-Problems

UNIT-VI

Principle of least squares.

UNIT- VII

Correlation - Rank correlation-Related problems

UNIT- VIII

Regression - Problems

BLOCK III: CORRELATION COEFFICIENT, INTERPOLATION AND ATTRIBUTES

 UNIT-IXCorrelation Coefficient for a Bivariate Frequency Distribution.

UNIT-X

Interpolation - Finite Differences - Newton's Formula - Lagrange's FormulaProblems

UNIT-XI

Attributes - Consistency of Data - Independence and Association of Data -Problems

BLOCK IV: INDEX NUMBERS AND TIME SERIES

UNIT-XII

Index Numbers - Consumer Price Index Numbers - Problems.

UNIT -XIII

Analysis of Time series - Time series- Components of a Time series

UNIT- XIV

Measurement of Trends-Related problems.

REFERENCE BOOKS:

1. Arumugam \& Issac, Statistics, New Gamma Publishing House, 2007.
2. S.P.Gupta, Statistical Methods, Sultan Chand \& Sons, $37^{\text {th }}$ Edition, 2008.
3. Statistics by Dr. S. Arumugam and Mr. A.ThangapandiIssac, New Gamma Publishing House, Palayamkottai, June 2015.

Learning Outcomes:

After completion of this course the students will:

1. Recognize the role of statistics in the applications of many different fields.
2. Define and illustrate the concepts of mean, median and mode compute the Harmonic and Geometric mean.
3. Define, illustrate and apply the concepts of curve fitting and principles of least square.
4. Define, illustrate and apply finite difference methods using Newton's and Lagrange's formulae.
5. Illustrate and apply attributes, consistency of data and Independence and Association of Data.
6. Define and examine Index numbers, Time series and measurement of trends.

SEMESTER - V

Course Code	Title of the Course
11351	PART-III : MODERN ALGEBRA

Course Objectives:

The general objectives of the course is students will be able to:

1. Formulate a rigorous mathematical proof.
2. Analyze the concept of sets, groups, subgroups, cosets, homomorphism and isomorphism theorems.
3. Analyze the concept of permutations an order of an element, relations, partial orders and binary operations.
4. Determine whether a subset of a ring is an ideal, prime ideal, or maximal ideal.
5. Perform operations with ring homomorphism.
6. Compute with polynomials and determine their reducibility.
7. Demonstrate understanding of key concepts with integral domains.
8. Demonstrate understanding of (abstract) vector spaces, determine whether a subset is a subspace, and determine whether a set of vectors is linearly independent.
9. Analyze the similarities and differences between finite fields and characteristic zero fields.
Course Description:

BLOCK I: GROUP AND AUBGROUPS

UNIT- I

Set theory- Sets and mappings- concept of a set - Set inclusion- union, intersection of sets- Difference of sets- Complement of a set-Symmetric difference of two sets - Cartesian product of sets
UNIT- II
Relations - Equivalence relations - Partial order relations - Functions - Binary operations
UNIT- III
Group theory: Definition and examples - Properties - Permutation groups, Examples and problems
UNIT- IV
Subgroups - Cyclic groups - Order of an element-Problems.

BLOCK II: GROUP ISOMORPHISM AND RINGS

UNIT- V

Cosets - Lagrange's theorem - Index of a subgroup- Euler's theorem- Fermat's theorem-Problems

UNIT-VI

Normal subgroups and Quotient groups - Homomorphism - Fundamental theorem of homomorphism
UNIT -VII
Isomorphism-Cayley's theorem- Automorphism-Problems.
UNIT -VIII
Ring theory: Definition and examples - Properties of rings- Isomorphism - Types of rings.

BLOCK III: FIELDS, QUOTIENT, RINGS AND IDEALS

UNIT -IX

Integral domains - Fields - Characteristic of a ring - Subrings.
UNIT- X
Quotient Ring-Maximal and prime ideals -Ring homomorphism-Fundamental theorem of Ring homomorphism
UNIT- XI
Quotient field - Euclidean ring - Properties - Polynomial rings- Gauss lemmaEisenstein' criterion.

BLOCK IV: VECTOR SPACES

UNIT -XII

Vector spaces: Definition and examples - Properties of vector space-Problems.

UNIT- XIII

Subspaces - Linear independence - Span of a set - Basis and dimension - Rank and nullity of a linear transformation

UNIT -XIV

Inner product spaces: Definition and examples- Orthogonality -Orthogonal complement.

REFERENCES:

1. Arumugam \& Issac, Modern Algebra, Scitech Publications(India) Pvt. Ltd., 2008.
2. A.R. Vasistha, Modern Algebra, Krishna Prakashan Mandir, Meerut, 1994-95.
3. T.K.Manickavasagam Pillai, T.Nagarajan \& K.S.Ganapathy, Algebra Vol.I, S.Viswanathan(Printers \& Publishers) Pvt. Ltd., 2012.

Learning Outcomes:

After completion of this course the students will:

1. Demonstrate factual knowledge including the mathematical notation and terminology used in this course.
2. Read, interpret, and use the vocabulary, symbolism, and basic definitions used in algebra, including binary operations, relations, groups, subgroups, homomorphisms, rings, and ideals.
3. Describe the fundamental principles including the laws and theorems arising from the concepts covered in this course.
4. Develop and apply the fundamental properties of algebraic structures, their substructures, their quotient structure, and their mappings.
5. Prove basic theorems such as Lagrange's theorem, Cayley's theorem, and the fundamental theorems for groups and rings.
6. Apply course material along with techniques and procedures covered in this course to solve problems.
7. Use the facts, formulas, and techniques learned in this course to prove theorems about the structure, size, and nature of groups, subgroups, quotient groups, rings, subrings, ideals, quotient rings, and the associated mappings. Students will also solve problems about the size and composition of subgroups and quotient groups; the orders of elements; isomorphic groups and rings.
8. Apply Vector spaces, Subspaces, Linear independence, Rank and nullity of a linear transformation and Inner product spaces: Definition and examples, Orthogonality, Orthogonal complement.

Course Code	Title of the Course
11352	PART-III : OPERATIONS RESEARCH

Course Objectives:

The general objectives of the course is students will be able to:

1. Formulate and model a linear programming problem from a word problem and solve them graphically in 2 and 3 dimensions, while employing some convex analysis.
2. Place a Primal linear programming problem into standard form and use the Simplex Method or Revised Simplex Method to solve it.
3. Find the dual, and identify and interpret the solution of the Dual Problem from the final tableau of the Primal problem.
4. Modify a Primal Problem, and use the Fundamental Insight of Linear Programming to identify the new solution, or use the Dual Simplex Method to restore feasibility.
5. Interpret the dual variables and perform sensitivity analysis in the context of economics problems as shadow prices, imputed values, marginal values, or replacement values.
6. Explain the concept of complementary slackness and its role in solving primal/dual problem pairs.
7. Classify and formulate integer programming problems and solve them with cutting plane methods, or branch and bound methods.
8. Formulate and solve a number of problems in game theory using various methods.

Course Description:

BLOCK I: SIMPLEX, BIG M AND TWO PHASE METHODS IN LPP

UNIT -I

Introduction - Origin and Development of O.R - Nature and features of O.R. Scientific Methods in O.R. - Modeling in O.R. - Advantages and Limitations of Models General solution methods of O.R. models - Applications of Operations Research

UNIT -II

Linear Programming problem - Mathematical formulation of the problem - Illustration on Mathematical formulation of linear programming problems - Graphical solution method - Some exceptional cases.
UNIT- III
General linear programming problem - Canonical and Standard forms of L.P.P Simplex method.

UNIT- IV

Linear programming using artificial variables- Big M method - Two Phase method- Problems

BLOCK II: DUALITY AND INTEGER PROGRAMMING

UNIT -V

Duality in linear programming - General primal and dual pair - Formulating a Dual problem Primal - Dual pair in matrix form - Duality Theorems - Complementary Slackness Theorem.

UNIT -VI

Integer Programming - Cutting plane technique, Dual simplex method.

UNIT -VII

Introduction - L.P. formulation of T.P. - Existence of solution in T.P. - The Transportation table Loops in T.P. - Solution of a Transportation problem - Finding an initial basic - feasible solution (NWCM - LCM - VAM).

UNIT -VIII

Degeneracy in TP - Transportation Algorithm (MODI Method) - Unbalanced T.P Maximization T.P.

BLOCK III: ASSIGNMENT AND SEQUENCING PROBLEM

UNIT- IX

Assignment problem - Introduction - Mathematical formulation of the problem - Test for optimality by using Hungarian method - Maximization case in Assignment problem

UNIT- X

Sequencing problem - Introduction - problem of sequencing - Basic terms used in Sequencing-n jobs to be operated on two machines - problems - n jobs to be operated on K machines-problems-Two jobs to be operated on K machines (Graphical method)-problems.

UNIT -XI

Game Theory - Two person Zero - Sum Games - Basic terms - Maximin - Minimax Principle.

BLOCK IV: DOMINANCE IN GAMES AND NETWORK ANALYSIS

UNIT -XII

Games without saddle points - Mixed strategies - Graphical solution of $2 \times \mathrm{n}$ and $\mathrm{m} \times 2$ games UNIT -XIII Dominance Property - General solution of $m \times n$ rectangular games-Problems.
UNIT -XIV
Network Scheduling by PERT / CPM - Network Basic components - Drawing network Critical path Analysis - PERT Analysis - Distinction between PERT and CPM.

REFERENCES:

1. R.S.Arumugam, Operations Research, New Gamma Publications, 2006.
2. V.Sundaresan, K.S.Ganapathy \& K.Ganesan, Resource Management Techniques(Operations Research), A.R.Publications.
3. Kanti Swarup, P.K. Gupta \& Man Mohan, Sultan Chand \& Sons, $13^{\text {th }}$ Edition, 2007.

Learning Outcomes:

After completion of this course the students will:

1. Understand the concept of operations research methods and its uses in various fields.
2. Identify and develop operational research models from the verbal description of the real system.
3. Understand the mathematical tools that are needed to solve optimization problems.
4. Use mathematical software to solve the proposed models.
5. Develop a report that describes the model and the solving technique, analyze the results and propose recommendations in language understandable to the decision making processes in Management Engineering.

Course Code	Title of the Course
11353	PART-III : NUMERICAL ANALYSIS

Course Objectives:

The general objectives of the course is students will be able to:

1. Find numerical approximations to the roots of an equation by Newton method, Bisection Method, Secant Method, etc.
2. Find numerical solution to a system of linear equations by Gaussian Elimination and GaussSiedel methods.
3. Apply several methods of numerical integration, including Romberg integration.
4. Apply Taylor and Maclaurin Series to numerical problems.
5. Find the Lagrange Interpolation Polynomial for any given set of points.
6. Find numerical solution of a differential equation by Euler's, Modified Euler's, Predictor Corrector and Runge-Kutta Methods.
7. Use finite differences for interpolation, differentiation, etc.

Course Description:

BLOCK I: POLYNOMINALM EQUATIONS AND SYSTEM OF LINEAR EQUATION

UNIT -I

Algebraic \& Transcendental and polynomial equations: Bisection method, Iteration method, Method of false position, Newton-Raphson method.

UNIT -II

System of linear equations: Matrix inversion method, Cramer's rule, Guass elimination method, Guass-Jordan elimination method, Triangularisation method.
UNIT- III
Solutions to Linear Systems - Jacobi \& Gauss Siedal iterative methods - Theory \& problems.
UNIT -IV
Interpolation: Graphic method- Finite differences - Forward and Backward differences Central differences-Fundamental theorem of finite differences.

BLOCK II: INTERPOLATIONS

UNIT- V

Interpolating Polynomials using finite differences- Other difference operators.
UNIT -VI
Lagrange and Newton interpolations-Applications.

UNIT -VII

Divided differences and their properties - Application of Newton's General Interpolating formula.

UNIT -VIII

Central differences Interpolation formulae - Guass formulae, Stirlings formula, Bessel's formula, Everett's formula, Hermite's formula.

BLOCK III: NUMERICAL DIFFERENCIATION AND INTEGRATION

UNIT -IX

Numerical differentiation - Methods based on interpolation-Problems.

UNIT -X

Numerical differentiation - Methods based on finite differences-Problems.

UNIT -XI

Numerical integration, Trapezodial rule, Simpson's $1 / 3$ rule, Simpson's $3 / 8$ rule, Weddle's rule, Cote's method.

BLOCK IV: NUMERICAL SOLUTIONS OF ODE

UNIT -XII

Numerical solutions of ordinary differential equations: Taylor's series method, Picard's method, Euler's method, Runge-Kutta method

UNIT -XIII

Numerical solutions of ordinary differential equations using Runge Kutta $2{ }^{\text {nd }}$ and
$4^{\text {th }}$ order methods (Derivation of the formula not needed) - Theory \& problems

UNIT- XIV

Predictor-Corrector methods-Milne's Predictor Corrector Methods-Adam's Predictor Corrector Method

REFERENCES:

1. Arumugam, Issac \& Somasundaram, Numerical Methods, Scitech Publications(India) Pvt. Ltd., $2^{\text {nd }}$ Edition, 2010.
2. P.P.Gupta \& G.S.Malik, Calculus of finite differences and Numerical Analysis, Krishnaprakasham Mandhir, Meerut.
3. Dr.M.K.Venkatraman, Numerical Methods in Science andEngineering.

Learning Outcomes:

After completion of this course the students will:

1. Use numerical methods in modern scientific computing with finite precision computation
2. Understand the numerical interpolation and approximation of functions, numerical integration and differentiation, numerical solution of ordinary differential equations.
3. Demonstrate understanding of common numerical methods and how they are used to obtain approximate solutions to otherwise intractable mathematical problems.
4. Apply numerical methods to obtain approximate solutions to mathematical problems.
5. Derive numerical methods for various mathematical operations and tasks, such as interpolation, differentiation, integration, the solution of linear and nonlinear equations, and the solution of differential equations.
6. Analyse and evaluate the accuracy of common numerical methods.
7. Implement numerical methods in Matlab and write efficient, well-documented Matlab code and present numerical results in an informative way.

Course Code	Title of the Course
11354	PART-III : TRANSFORM TECHNIQUES

Course Objectives:

The general objectives of the course is students will be able to:

1. Find the Laplace Transforms, Fourier series and Z-Transforms using various examples.
2. Understand a solid mathematical foundation in complex variables and common engineering transforms, including intuition in their use, and tools and techniques for applying them to a variety of problems.

Course Description:

BLOCK I: LAPLACE TRANSFORMS

UNIT- I
Laplace Transform -Definition - Laplace Transform of Standard functions Elementary Theorems.

UNIT- II

Laplace Transform of periodic functions - problems.

UNIT- III

Inverse Laplace Transforms - Standard formulae - Basic Theorems -Problems.

BLOCK II: SOLUTION OF ODE AND FOURIER SERIES

UNIT- IV
Solving Ordinary Differential Equations with constant coefficients using Laplace Transform- Problems.
UNIT- V
Solving Ordinary Differential Equations variable coefficients -using Laplace Transform-Problems.
UNIT- VI
Solving Simultaneous linear equations using Laplace Transform-Problems.
UNIT- VII
Fourier Series - Definition - To find the Fourier coefficients of Periodic functions of period 2π.
UNIT- VIII
Even and odd functions in Fourier series - Half range Fourier series - problems.

BLOCK III: FOURIER TRANSFORMS

UNIT- IX

Fourier Transforms - Complex form of Fourier Integral Formula - Fourier Integral theorem.
UNIT- X
Properties of Fourier Transform - Fourier sine and cosine Transforms - Properties.
UNIT- XI
Parsival's Identity In Fourier Transforms- Problems.

BLOCK IV: Z - TRANSFORMS

UNIT- XII

Z Transforms - Definition - Proprieties - Z Transforms of some basic functions Problems.

UNIT- XIII

Inverse Z Transforms - Methods to find the inverse Z Transform - Use of Z Transforms.
UNIT- XIV
Transforms to solve finite Difference Equations - problems.

REFERENCES:

1. Calculus Volume III by S.Narayanan and T.K.ManicavachagomPillay, S.Viswanathan (Printers \& Publishers) Pvt. Ltd., 2014.
2. Engineering Mathematics $3^{\text {rd }}$ Edition by T.Veerarajan, Tata McGraw Hill Publishing Company Limited, New Delhi.

Learning Outcomes:

After completion of this course the students will:

1. Determine over what domain a complex function is analytic by using a variety of tools.
2. Expand complex functions into power series, and assess region of convergence.
3. Evaluate contour integrals in the complex plane.
4. Understand the underlying representations of linear transforms, based on complete, orthogonal basis sets.
5. Perform forward and inverse Laplace transforms, with or without tables, by a variety of techniques.
6. Apply Laplace transform techniques to a variety of problems, including ordinary and partial differential equations, and system stability.
7. Understand and apply Fourier transform methods to one-dimensional and multidimensional problems.
8. Understand bandlimited functions, sampling, and aliasing.
9. Perform forward and inverse Z transforms, with or without tables, by a variety of techniques.
10. Apply Z transform techniques to a variety of problems, including difference equations and discrete-time system stability.
11. Understand the relationships between Laplace transform, Fourier transform, Z transform, and discrete Fourier transform.
12. Understand the relationships between various discrete versions of the Fourier transform

SEMESTER - VI

Course Code	Title of the Course
11361	PART-III : DISCRETE MATHEMATICS

Course Objectives:

The general objectives of the course is
students will be able to:

1. Simplify and evaluate basic logic statements including compound statements, implications, inverses, converses, and contrapositives using truth tables and the properties of logic.
2 Express a logic sentence in terms of predicates, quantifiers, and logical connectives.
2. Apply the operations of sets and use Venn diagrams to solve applied problems.
3. Solve problems using the principle of inclusion, exclusion.
4. Apply rules of inference, tests for validity, and methods of proof including direct and indirect proof forms, proof by contradiction, proof by cases, and mathematical induction and write proofs using symbolic logic and Boolean Algebra.
5. Identify the base step and the recursive or inductive step in applied problems and give a recursive and a non -recursive definition for an iterative algorithm.
6. Solve problems using recurrence relations and recursion to analyze algorithms and programs such as finding Fibonacci numbers, the Ackerman function and Tower of Hanoi problems.
7. Determine if a given graph is simple or a multigraph, directed or undirected, cyclic or acyclic, and determine the connectivity of a graph.
8. Represent a graph using an adjacency list and an adjacency matrix and apply graph theory to application problems such as computer networks.
9. Determine if a graph has an Euler or a Hamilton path or circuit.
10. Determine if a graph is a binary tree, N -ary tree, or not a tree; use the properties of trees to classify trees, identify ancestors, descendants, parents, children, and siblings; determine the level of a node, the height of a tree or subtree and apply counting theorems to the edges and vertices of a tree.
11. Perform tree traversals using preorder, inorder, and postorder traversals and apply these traversals to application problems; use binary search trees or decision trees to solve problems.
12. Evaluate Boolean functions and simplify expression using the properties of Boolean algebra.
13. Apply Boolean algebra to circuits and gating networks.
14. Use finite-state machines to model computer operations

Course Description:

BLOCK I: LOGIC, TAUTOLOGY AND THEORY OF INFERENCE

UNIT -I

Logic introduction - Connectives - Atomic and compound statements - Truth table - Problems.

UNIT- II

Tautology - Tautological implications and equivalence of formulae - Replacement Process- Law of dualityTautological implications.

UNIT -III

Normal forms - Principal normal forms-Problems.
UNIT- IV
Theory of inference- Rules of inference-Open statements -Problems

BLOCK II: QUANTIFIERS, LATTICES AND CODING THEORY

UNIT- V

Quantifiers - bound and free variables -Theory of inference for predicate calculus.
UNIT-VI
Relations - Representation of a relation - Operations on relations - Equivalence
relation.

UNIT -VII

Lattices - Some properties of Lattices, New Lattices - Modular and Distributive Lattices -Boolean Algebra, Boolean Polynomials.

UNIT -VIII

Coding theory - Introduction - Hamming Distance - Encoding a message - Group codes - Procedure for Generating Group codes - Decoding and Error correction.

BLOCK III: MATRIX OF A GRAPH AND CHROMATIC NUMBERS

UNIT -IX

Definition of a Graph - finite \& infinite graphs - incidence, degree isolated \& pendent vertices isomorphisms -sub graphs - walks , paths \& circuits - Connected \& disconnected graphs.
UNIT -X
Matrix representation of a graph - Incidence matrix -Circuit Matrix - Fundamental Circuit Matrix and rank of the circuit matrix - Cut set matrix - adjacency matrix.
UNIT- XI
Chromatic Number - Chromatic partitioning - Chromatic polynomial-Problems.

BLOCK IV: TREES AND CUT SETS

UNIT -XII

Trees -properties of trees -pendent vertices in a tree - distances \& centres in a tree - Rooted \& binary trees.
UNIT -XIII
Spanning trees -Fundamental circuits - Finding all spanning trees of a Graph Spanning trees in a weighted graph.

UNIT -XIV

Cut sets - Properties of a Cut set - all Cut sets in a graph - Fundamental circuits \& Cut sets -Connectivity \& separability - Eulerian and Hamiltionian graphs -Problems.

REFERENCES:

1. Venkatraman, Sridharan and Chandrasekaran, Discrete Mathematics, National Publishing House, Chennai, 2003.
2. J.P. Trembley and R.P. Manohar, Discrete Mathematics Structures with applications to Computer Science, Mc.Graw Hill Interamericana,, 1975.
3. S.Arumugam \& S.Ramachandran, Scitech Publications, Chennai, 2001.
4. V.K.Balakrishnan, Introductory Discrete Mathematics, Dover Publications, INC. Newyork.
5. A First course in Graph Theory by S.A. Choudum, Macmillan India Ltd. New Delhi, 1987.

Learning Outcomes:

After completion of this course the students will:

1. some fundamental mathematical concepts and terminology;
2. how to use and analyse recursive definitions;
3. how to count some different types of discrete structures;
4. techniques for constructing mathematical proofs, illustrated by discrete mathematics examples.
5. Use logical notation to define and reason about fundamental mathematical concepts such as sets, relations, functions, and integers.
6. Evaluate elementary mathematical arguments and identify fallacious reasoning (not just fallacious conclusions).
7. Synthesize induction hypotheses and simple induction proofs.
8. Prove elementary properties of modular arithmetic and explain their applications in Computer Science, for example, in cryptography and hashing algorithms.
9. Apply graph theory models of data structures and state machines to solve problems of connectivity and constraint satisfaction, for example, scheduling.
10. Apply the method of invariants and well-founded ordering to prove correctness and termination of processes and state machines.
11. Derive closed-form and asymptotic expressions from series and recurrences for growth rates of processes.
12. Calculate numbers of possible outcomes of elementary combinatorial processes such as permutations and combinations.
13. Calculate probabilities and discrete distributions for simple combinatorial processes; calculate expectations.
14. Problem solve and study in a small team with fellow students.

Course Code	Title of the Course
11362	PART-III : FUZZY ALGEBRA

Course Objectives:

The general objectives of the course is students will be able to:

1. Understand the basic mathematical elements of the theory of fuzzy sets.
2. Find the differences and similarities between fuzzy sets and classical sets theories.
3. Find the relations in fuzzy sets.
4. Find the types of measures and operations in fuzzy sets.
5. Understand the meaning of uncertainty in practical situations.

Course Description:

BLOCK I: FUZZY SETS AND OPERATIONS ON FUZZY SETS

UNIT-I

Fuzzy sets - Basic types - Basic concepts - α - cuts - Additional prosperities of α cuts - Extension principle for Fuzzy sets.

UNIT- II

Operations on Fuzzy sets - Types of operations - Fuzzy complements - Fuzzy Union and intersections.

UNIT- III

Combinations of operations - Fuzzy Arithmetic - Fuzzy numbers

UNIT- IV

Arithmetic operations on intervals - Arithmetic operations on Fuzzy numbers.

BLOCK II: FUZZY RELATIONS AND FUZZY MEASURES

UNIT- V

Fuzzy relations - Binary fuzzy relations - Fuzzy equivalence and similarity relations - Fuzzy compatibility relations.

UNIT- VI

Fuzzy ordering relations - fuzzy morphisms.

UNIT- VII

Fuzzy measures-Belief and Plausibility measures- Probability measures- Problems.

UNIT- VIII

Possibility measures- Necessity measures- Relationship among classes of fuzzy measures.

BLOCK III: UNCERTAINITY AND MEASURES OF DISSONANCE

UNIT- IX

Types of uncertainity- Measures of fuzziness-Problems.

UNIT- X

Classical measures of uncertainity-Hartley information-Shannon Entropy-Boltzmann Entropy.

UNIT- XI
Measures of Dissonance- Body of evidence-Consonant body of evidence-Problems.

BLOCK IV: MEASURE OF CONFUSION, UNCERTAINITY AND INFORMATION

UNIT- XII

Measures of confusion-entropy like measures-Problems.

UNIT- XIII

Measures of nonspecificity - U- uncertainity -Problems.

UNIT- XIV

Uncertain and Information- syntactic, semantic, pragmatic-Problems.

REFERENCES:

1. George J.Klir and Bo Yuan, Fuzzy Sets and Fuzzy Logic, Theory and Applications, Prentice Hall Inc., New Jersey. 1995.
2. George J.Klir and Tina A. Folger, Fuzzy sets, Uncertainity and Information, Prentice Hall of India, New Delhi, 2007.
3. H.J.Zimmermann, Fuzzy Set Theory and its Applications, Allied Publishers Limited, New Delhi, 1991.

Learning Outcomes:

After completion of this course the students will:

1. Be able to distinguish between the crisp set and fuzzy set concepts through the learned differences between the crisp set characteristic function and the fuzzy set membership function.
2. Be able to draw a parallelism between crisp set operations and fuzzy set operations through the use of characteristic and membership functions respectively.
3. Be able to define fuzzy sets using linguistic words and represent these sets by membership functions.
4. Know how to perform mapping of fuzzy sets by a function and also use the α-level sets in such instances.
5. Know fuzzy-set-related notions; such as α-level sets, convexity, normality, support, etc. n Know the concept of a fuzzy number and how it is defined.
6. Become familiar with the extension principle, its compatibility with the α-level sets and the usefulness of the principle in performing fuzzy number arithmetic operations (Additions, multiplications, etc.)
7. Become familiar with fuzzy relations and the properties of these relations.
8. Become capable of representing a simple classical proposition using crisp set characteristic function and likewise representing a fuzzy proposition using fuzzy set membership function.
9. Become aware of the application of fuzzy algebra in real world problems.
10. Have acquired the ability of thinking differently and have become capable, when necessary, to apply a new thinking methodology to real life problems including engineering ones.

Course Code	Title of the Course
11363	PART-III : COMPLEX ANALYSIS

Course Objectives:

The general objectives of the course is students will be able to:

1. Understand how complex numbers provide a satisfying extension of the real numbers;
2. Appreciate how throwing problems into a more general context may enlighten one about a specific context (e.g. solving real integrals by doing complex integration; Taylor series of a complex variable illuminating the relationship between real function that seem unrelated -- e.g. exponentials and trig functions);
3. Learn techniques of complex analysis that make practical problems easy (e.g. graphical rotation and scaling as an example of complex multiplication);
4. Continue to develop proof techniques;
5. Appreciate how mathematics is used in design (e.g. conformal mapping);
6. Unlearn (if ever learned) the notion that mathematics is all about getting "the right answer";
7. Hone the ability to do reality checks on calculations;
8. Hone the ability to communicate mathematics.

Course Description:

BLOCK I: COMPLEX NUMBERS AND POWER SERIES

UNIT- I

The geometric representation of a complex number - the spherical representation and stereographic projection.

UNIT- II

Definitions of complex analytic function-Complex differentiation. - The Cauchy- Riemann equations.

UNIT-III

Orthogonal trajectories and harmonic functions- Harmonic and Conjucate harmonic - To find an analytic function $\mathrm{f}(\mathrm{z})=\mathrm{u}+\mathrm{iv}$ if a harmonic function u is given - Milne Thomson method-Problems.
UNIT- IV
Power series - radius of convergence - Abel's limit theorem-Examples.
BLOCK II: CONFORMAL MAPPING AND BILINEAR TRANSFORMATIONS

UNIT- V

Generating functions - Fibonacci numbers - An application of power series.

UNIT- VI

Conformal mappings - Bilinear transformations - Fixed point of bilinear transformations - Cross ratio.

UNIT- VII

General bilinear transformations which transforms unit disk onto the unit disk; half plane $\operatorname{Im}(\mathrm{z}) \square$ onto the unit disk.

BLOCK III: COMPLEX INTEGRATION, ZEROS AND POLES

UNIT -VIII

Complex integration - Cauchy's theorem for a rectangle and for a disk - The index of a point with respect to a closed curve - Cauchy's integral formula-Problems.

UNIT- IX

Higher derivatives in complex integration- Taylor's theorem - Problems.

UNIT- X

Zeros and poles- The local mapping theorem - The maximum principle - Schwarz's lemma - Morera's theorem - Cauchy's estimate - Liouville's theorem.

UNIT- XI

The minimum- maximum theorem, Fundamental theorem of algebra.
BLOCK IV: SERIES OF EXPANSION, SINGULARITIES AND EVALUATION OF DEFINITE INTEGRALS

UNIT -XII

Series expansions - Taylor's Series, Laurent series - Laurent's theorem- Problems.

UNIT- XIII

Singularities - Cauchy's residue theorem - The argument principle - Rouche's
theorem -Problems.

UNIT- XIV

Evaluation of definite integrals for unit circles, Poles lie in the upper half of the plane and real axis.

REFERENCES:

1. Arumugam, Issac \& Somasundaram, Complex Analysis, Scitech Publications(India) Pvt. Ltd., 2004.
2. T.K.Manickavasagam Pillai \& others, S.Viswanathan(Printers \& Publishers) Pvt. Ltd., Chennai, 1997.
3. P.Duraipandian \& others, Complex Analysis, Emarald Publishers, Chennai.
4. V.Karunakaran, Complex Analysis, Alpha Science International Ltd., Harrow, U.K, Second Edition, 2005.
5. P.P Gupta - Kedarnath \& Ramnath, Complex Variables, Meerut -Delhi
6. J.N. Sharma, Functions of a Complex variable, Krishna Prakasan Media (P) Ltd, 13th Edition, 1996-97.

Learning Outcomes:

After completion of this course the students will:

1. Justify the need for a Complex Number System and explain how is related to other existing number systems.
2. Define a function of complex variable and carry out basic mathematical operations with complex numbers.
3. Know the condition(s) for a complex variable function to be analytic and/or harmonic.
4. State and prove the Cauchy Riemann Equation and use it to show that a function is analytic.
5. Define singularities of a function, know the different types of singularities, and be able to determine the points of singularities of a function.
6. Explain the concept of transformation in a complex space (linear and non linear) and sketch associated diagrams.
7. Understand the concept of sequences and series with respect to the complex numbers system and establish whether a given series/ sequences is convergent/ divergent at a specified point or interval.

Course Code	Title of the Course
$\mathbf{1 1 3 6 4}$	PART-III : COMBINATORICS

Course Objectives:

The general objectives of the course is students will be able to:

1. Familiar with fundamental combinatorial structures that naturally appear in various other fields of mathematics and computer science.
2. Understand the concept of Recurrence relations, Binary operations on Permutation groups.
3. Understand the concept of Inclusion and Exclusion principle
4. Learn how to use these structures to represent mathematical and applied questions, and they will become comfortable with the combinatorial tools commonly used to analyze such structures.
5. Learn how to prove the existence or non-existence of the object, compute the number of such objects, and understand their underlying structure.

Course Description:

BLOCK I: COMBINATION OF NUMBERS AND GENERATING FUNCTIONS

UNIT-I

Basic Combinatorial Numbers - Stirling Numbers of the First kind - Stirling Numbers of the Second kind.

UNIT-II

Recurrence Formula for $S_{n}{ }^{m}$ - Recurrence formula for $P_{n}{ }^{m}$.

UNIT-III

Patterns of Distributions-Problems.

UNIT-IV

Generating Functions - The Algebra of Formal Power Series - Generating functions for Permutations - Generating functions for Partitions.

BLOCK II: RECURRENCE RELATIONS AND SYMMETRIC FUNCTIONS

UNIT-V

Inventory of Maps - Recurrence Relations.

UNIT-VI

Symmetric functions - The Monomial Symmetric functions K_{λ} - The complete Homogeneous Symmetric Functions h_{λ}.

UNIT-VII

The Elementary Symmetric Functions a_{λ} - The Power sum Symmetric Function s_{λ}.

UNIT-VIII

Multinomials- Basic concepts- Problems.

BLOCK III: PRINCIPLES, PERMULATIONS AND POLYA THEORY

UNIT-IX

Inclusion and Exclusion Principle - Theorems and Problems.

UNIT-X

Permutations with Forbidden Positions - The Menage problem

UNIT-XI

Problem of Fibonacci - Polya Theory - Problems
BLOCK IV: PERMUTATION GROUPS

UNIT-XII

Necklace problem and Burnside's Lemma - Cyclic Index of a Permutation Group.

UNIT-XIII

Polya's Theorems and their Immediate Applications - Related problems.

UNIT-XIV

Binary operations on Permutation Groups.

REFERENCES:

1. Combinatorics Theory and Applications by V.Krishnamurthy, Affliated East-West Press Private Limited, New Delhi, 1985.
2. A First Course in Combinatorial Mathematics by IanAnderson, Oxford Applied Mathematics and Computing Science Series, U.K., 1974
3. Combinatorics by V.K.Balakrishnan, Schuam Series, 1996

Learning Outcomes:

After completion of this course the students will:

1. Be able to utilize mathematics and computer applications to solve practical problems in mathematics.
2. Model and analyze practical problems in various areas using the combinatorial tools.
3. Be able to identify, formulate, and solve problems in mathematics, including proofwriting.
4. Understand and deal with enumerative problems.
5. Put to practice problem solving techniques that they know, and learn new ones, such as non-constructive existence proofs and the probabilistic method.

e. 3. Duration of the Programme:

The programme for the Undergraduate degree in Mathematics shall consist of three academic years divided in to six semesters. Each semester consists of four theory Papers. Each theory course carries 4 credits and each semester consist of 16 credits.

e. 4. Faculty and Support Staff Requirements:

The programme for the Undergraduate degree in Mathematics requires the following faculty and supporting staff:

Staff Category	Required
Core Faculty*	3
Faculty - Specialization*	2
Faculty for Language*	2
Clerical Assistant	1

[^0]
e. 5. Instructional Delivery Mechanisms:

The instructional delivery mechanisms of the programme includes SLM - study materials, face to face contact session for theory course of the programme, e-content of the study materials in the form of CD, MOOC courses wherever applicable.

e. 6. Identification of Media:

The SLM - designed study materials will be provided in print media as well is in the form of CD which carries electronic version of the study material in addition to MOOC courses.

e. 7. Student Support Services:

The student support services will be facilitated by the head quarter i.e., Directorate of Distance Education, Alagappa University, Karaikudi and its approved Learning Centres located at various parts of Tamil Nadu. The pre-admission student support services like counselling about the programme including curriculum design, mode of delivery, fee structure and evaluation methods will be explained by the staff at head quarter and Learning Centres. The post-admission student support services like issuance of identity card, study materials, etc. will be routed through the Learning Centres. The face to face contact sessions of the programme for both theory and practical courses will be held at the head quarter and Learning Centres. The conduct of end semester examinations, evaluation and issuance of certificates will be done by office of the controller of examinations, Alagappa University, Karaikudi.

f. Procedure for Admission, curriculum transaction and evaluation:

f. 1. Procedure for Admission:

A candidate who has passed $12^{\text {th }}$ standard $(10+2$ system $) / 3$ years diploma of any School or Institution accepted by the Syndicate as equivalent there to shall be eligible to appear and qualify for the B.Sc Degree in Mathematics of this University after a course of study of three academic years.

f. 2. Curriculum Transactions:

The classroom teaching would be through chalk and talk method, use of OHP, Power Point presentations, web-based lessons, animated videos, etc. The face to face contact sessions would be such that the student should participate actively in the discussion. Student seminars would be conducted and scientific discussions would be arranged to improve their communicative skill.

The face to face contact sessions will be conducted in following durations;

Course Type	Face to Face Contact Session per Semester (in Hours)
Theory Courses $(4$ courses with 4 credits each $)$	64
Total	$\mathbf{6 4}$

f. 3. Evaluation:

The examinations shall be conducted separately for theory and practical's to assess the knowledge acquired during the study. There shall be two systems of examinations viz., internal and external examinations. In the case of theory courses, the internal evaluation shall be conducted as Continuous Internal Assessment via. Student assignments preparation and seminar, etc. The internal assessment shall comprise of maximum 25 marks for each course. The end semester examination shall be of three hours duration to each course at the end of each semester. In the case of Practical courses, the internal will be done through continuous assessment of skill in demonstrating the experiments and record or report preparation. The external evaluation consists of an end semester practical examinations which comprise of 75 marks for each course.

f. 3.1. Question Paper Pattern:

Answer all questions (one question from each unit with internal choices Time: 3 Hours Max. Marks: 75
Part A-10 x 2 Marks $=20$ Marks
Part B -5 x 5 Marks $=25$ Marks
Part C- 3×10 Marks $=30$ Marks

f. 3.2. Distribution of Marks in Continuous Internal Assessments:

The following procedure shall be followed for awarding internal marks for theory courses

Component	Marks
Assignments	25
(5 questions per course)	
Total	$\mathbf{2 5}$

f. 3.3. Passing Minimum:

- For internal Examination, the passing minimum shall be 40% (Forty Percentage) of the maximum marks (25) prescribed for UG and PG Courses.
- For External Examination, the passing minimum shall be 40% (Forty Percentage) of the maximum marks (75) prescribed for UG and PG Courses.
- In the aggregate (External + Internal), the passing minimum shall be 40% for UG and 50% for PG courses.

f. 3.4. Marks and Grades:

The following table gives the marks, grade points, letter, grades and classification to indicate the performance of the candidate.

Range of Marks	Grade Points	Letter Grade	Description
$90-100$	$9.0-10.0$	O	Outstanding
$80-89$	$8.0-8.9$	$\mathrm{D}+$	Excellent
$75-79$	$7.5-7.9$	D	Distinction
$70-74$	$7.0-7.4$	$\mathrm{~A}+$	Very Good
$60-69$	$6.0-6.9$	A	Good
$50-59$	$5.0-5.9$	B	Average
$00-49$	0.0	U	Re-appear
ABSENT	0.0	AAA	ABSENT

$\mathrm{C}_{i}=$ Credits earned for the course i in any semester
$\mathrm{G}_{i}=$ Grade Point obtained for course i in any semester.
n refers to the semester in which such courses were credited

For a semester;

Grade Point Average [GPA] $=\sum_{i} \mathrm{C}_{i} \mathrm{G}_{i} / \sum_{i} \mathrm{C}_{i}$
Grade Point Average $=\underline{\text { Sum of the multiplication of grade points by the credits of the courses }}$

Sum of the credits of the courses in a semester

For the entire programme;

Cumulative Grade Point Average [CGPA] $=\sum{ }_{n} \sum_{i} \mathrm{C}_{n i} \mathrm{G}_{n i} / \sum_{n} \sum_{i} \mathrm{C}_{n i}$

CGPA $=\underline{\text { Sum of the multiplication of grade points by the credits of the entire programme }}$
Sum of the credits of the courses for the entire programme

CGPA	Grad	Classification of Final Result
$9.5-10.0$	$\mathrm{O}+$	First Class- Exemplary*
9.0 and above but below 9.5	O	
8.5 and above but below 9.0	$\mathrm{D}++$	First Class with Distinction*
8.0 and above but below 8.5	$\mathrm{D}+$	
7.5 and above but below 8.0	D	First Class
7.0 and above but below 7.5	$\mathrm{A}++$	
6.5 and above but below 7.0	$\mathrm{A}+$	Second Class
6.0 and above but below 6.5	A	Re-appear
5.5 and above but below 6.0	$\mathrm{B}+$	B
5.0 and above but below 5.5	B	
0.0 and above but below 5.0	U	

*The candidates who have passed in the first appearance and within the prescribed semester of the UG Programme are eligible.

f. 3.5. Maximum duration for the completion of the course:

The maximum duration for completion of B.Sc., Degree in Mathematics programme shall not exceed ten semesters from their sixth semester.

f. 3.6. Commencement of this Regulation:

These regulations shall take effect from the academic year 2018-2019 (June session) i.e., for students who are to be admitted to the first year of the course during the academic year 20182019 (June session) and thereafter.

f. 4. Fee Structure:

The programme has the following Fee Structure:

Sl. No.	Fees Detail	Amount in Rs.		
		First Year	Second Year	Three Year
1	Admission Processing Fees	$\mathbf{1 0 0 . 0 0}$	-	-
2	Tuition Fees	$\mathbf{2 5 0 0 . 0 0}$	$\mathbf{2 5 0 0 . 0 0}$	$\mathbf{2 5 0 0 . 0 0}$
3	ICT Fees	$\mathbf{1 5 0 . 0 0}$	$\mathbf{1 5 0 . 0 0}$	$\mathbf{1 5 0 . 0 0}$
	TOTAL	$\mathbf{2 7 5 0 . 0 0}$	$\mathbf{2 6 5 0 . 0 0}$	$\mathbf{2 6 5 0 . 0 0}$

The above mentioned fee structure is exclusive of Exam fees.

g. Requirement of the laboratory support and Library Resources:

The students who have enrolled themselves in B.Sc., Mathematics Programme shall attend the face to face contact session for Theory Courses at their respective Learning Centres.

Directorate of Distance Education, Alagappa University, Karaikudi housing an excellent Library facility with adequate number of copies of books in relevant titles for B.Sc., Mathematics programme. The Central Library of Alagappa University also having good source of reference books. The books available at both the libraries are only for reference purpose and not for lending services.

h. Cost estimate of the programme and the provisions:

The cost estimate of the programme and provisions for the fund to meet out the expenditure to be incurred in connection with B.Sc., Mathematics Programme as follows:

S.No.	Expenditure Heads	Approx. Amount in Rs.
1	Programme Development	$10,00,000 /-$
2	Programme Delivery	$20,00,000 /-$
3	Programme Maintenance	$3,00,000 /-$

i. Quality assurance mechanism and expected programme outcomes:

i. 1. University's Moto:

'Excel ence in Action'

i. 2. University's Vision Statement:

Achieving Excellence in all spheres of Education, with particular emphasis on "PEARL"- Pedagogy, Extension, Administration, Research and Learning.

i. 2. University's Objectives:

1. Providing for Instructions and Training in such Branches of Learning as the University may determine.
2. Fostering Research for the Advancement and Dissemination of Knowledge

i. 3. University's Quality Policy:

Attaining Benchmark Quality in every domain of 'PEARL' to assure Stakeholder Delight through Professionalism exhibited in terms of strong purpose, sincere efforts, steadfast direction and skillful execution.

i. 4. University's Quality Quote:

Quality Unleashes Opportunities towards Excellence (QUOTE)

i.5. Programme's Review Mechanism:

The quality of the programme depends on scientific construction of the curriculum, strongenough syllabi, sincere efforts leading to skillful execution of the course of the study. The ultimate achievement of B.Sc., Mathematics programme of study may reflect the gaining of knowledge and skill in the subject. And all these gaining of knowledge may help the students to get new job opportunities, upgrading in their position not only in employment but also in the society, make students feel thirsty to achieve in research in the fields associated with the discipline- Mathematics achieving in competitive examinations on the subject.

The benchmark qualities of the programme may be reviewed based on the performance of students in their end semester examinations. Apart from the end semester examination-based review feedback from the alumni, students, parents and employers will be received and analyzed for the further improvement of the quality of the B.Sc., Mathematics Programme.---

MINUTES OF THE MEETING OF THE BOARD OF STUDIES IN MATHEMATICS (DEE) HELD ON 17.06.2017 AT 2.00 p. m. IN THE DEPARTMENT OF MATHEMATICS, ALAGAPPA UNIVERSITY, KARAIKUDI.

Members Present

1. Dr. N. Anbazhagan

- Chairman

2. Dr. M. Marudai

- Member

3. Dr. R. Uthayakumar - Member
4. Dr. R. Asokan
5. Dr. M. Mullai
6. Dr. J. Vimala

- Member

The chairman of the Board Dr. N. Anbazhagan welcomed the members.

1. Board of Studies in Mathematics has thoroughly discussed the B. Sc., (Mathematics), M. Sc., (Mathematics) syllabi and made necessary changes and corrections in the existing syllabi of all the above said programmes.
2. The corrected syllabi is enclosed herewith.

Dr. N. Anbazhagan
Dr. M. Marudai

br. R. Uthayakumar
N. bul -
Dr. M. Mulla

Dr. J. Vimala

[^0]: * Faculty may belongs to at least Assistant Professor Level

