

Curriculum (2018-2019 onwards)

for

Credit Based System

Programme Project Report

(Based on UGC-DEB 2017 guidelines)

Alagappa University

(A State University Accredited with A+ Grade by NAAC) Karaikudi - 630 003

CONTENTS

- a. Programme's Mission & Objectives
- b. Relevance of the Programme with Algappa University's Mission and Goals
- c. Nature of Prospective Target Group of Learners
- d. Appropriateness of programme to be conducted in Distance Learning mode to acquire specific skills and competence
- e. Instructional Design
 - e. 1. Curriculum Design
 - e. 2. Detailed Syllabi
 - e. 3. Duration of the Programme
 - e. 4. Faculty and Support Staff Requirements
 - e. 5. Instructional Delivery Mechanisms
 - e. 6. Identification of Media
 - e. 7. Student Support Services
- f. Procedure for Admission, Curriculum Transaction and Evaluation
 - f. 1. Procedure for Admission
 - f. 2. Curriculum Transactions
 - f. 3. Evaluation
 - f. 3.1. Distribution of Marks for Theory Course
 - f. 3.2. Distribution of Marks for Practical Course
 - f. 3.3. Passing Minimum
 - f. 3.4. Classification of Successful Candidates
 - f. 3.5. Marks and Grading
 - f. 3.6. Maximum Duration for the Completion of the Course
 - f. 3.7. Commencement of this Regulation
 - f. 4. Fee Structure
- g. Requirement of the Laboratory Support and Library Resources
- h. Cost Estimate of the Programme and the Provisions
- i. Quality Assurance Mechanism and Expected Programme Outcomes
 - i. 1. University's Moto
 - i. 2. University's Vision Statement
 - i. 3. University's Objectives
 - i. 4. University's Quality Policy
 - i. 5. University's Quality Quote
 - i. 6. Programme's Review Mechanism

Master of Science (M.Sc.) in Physics Programme (Distance Learning Mode)

Credit Based System (CBS) (*With effective from the academic year 2018 - 2019 onwards*)

a. Programme's Mission & Objectives:

The programme is named as Master of Science (M.Sc.) in Physics. The syllabus for this programme is framed under the rules of the Credit Based System (CBS). Physics is the natural science that involves the study of matter and its motion through space and time along with the related concepts such as energy and force. It is one of the most fundamental scientific disciplines. The main goal of Physics is to understand how the universe behaves. Physics explains the natural phenomena in the universe and often considered to be the most fundamental science. It provides a basis for all other sciences - without Physics, we could not have Biology, Chemistry, or anything else. Physics also makes significant contributions through advances in new technologies. One academic programme is necessary to create awareness to students in the emerging field and also it should teach basic concepts and developments of Physics to students to make them as scientist or technologists in this filed. Hence our task is to introduce the M.Sc. programme in Physics to educate the undergraduate students in the fascinating fields. Rigorous and comprehensive in approach, this syllabus presents essential contents in a detailed, clear and direct way. The programme is structured in such a way to impart more knowledge in science, in particular in Physics.

The major objectives of M.Sc. Physics programme are:

- To provide, thorough well designed studies of theoretical and experimental Physics, a worthwhile educational experience for all students.
- To acquire deep knowledge in the fundamental aspects of all branches of Physics.
- To acquire basic knowledge in the specialized thrust areas like Classical Mechanics, Quantum Mechanics, Mathematical Physics, Electromagnetic Theory, Electronics, Microprocessor & Electronic Instrumentation, Condensed Matter Physics, Nuclear and Particle Physics, Materials Science etc.,
- To develop abilities and skills that:

> are relevant to the study and practice of science,

- ➤ are useful in everyday life,
- are encouraging efficient & safe practice and effective communication,
- ➤ are encouraging research and development activities.
- To develop attitudes relevant to science such as:
 - Concern for accuracy and precision,
 - ➢ Objectivity,
 - ➢ Integrity,
 - \succ Enquiry,
 - \succ Initiative and
 - ➢ Inventiveness.

b. Relevance of the Programme with Algappa University's Mission and Goals:

In order to align with the mission and goals of Alagappa University, the M.Sc. Physics Programme is planned to deliver in Distance Learning mode which may reach the maximum number of student aspirants who are unable to thrive to spend non-elastic timings of formal conventional class room education. Such a higher education in science subject with appropriate laboratory experiences will enrich the human resources for the uplift of the nation to Educational, Social, Technological, Environmental and Economic Magnificence (ESTEEM).

c. Nature of Prospective Target Group of Learners:

This M.Sc. Physics Programme through Distance Learning mode is developed by keeping in mind to give opportunity to economically and socially excluded people including graduates of various socio-economic status viz., unemployed youths, employed with marginalized salary due to lack of sufficient knowledge in the subject Physics. Also, the target group of learners includes various level employees of Physics-based companies, secondary-level school teachers, research aspirants, women taking care of family - the important unit of the community, etc.

d. Appropriateness of programme to be conducted in Distance Learning mode to acquire specific skills and competence:

M.Sc. Physics Programme through Distance Learning mode is developed in order to give subject-specific skills including i) understanding of intermediate classical mechanics topics such as coordinate transformations, oscillatory motion, gravitation and other central forces, and Lagrangian mechanics, ii) master the basic elements of mathematical physics, iii) analyze and design basic op-amp circuits, particularly various linear and non-linear circuits, iv) create and solve mathematical models of physical phenomena using analytic and numerical methods, v) develop the programming skills of microprocessor, vi) identify the fundamental models of nuclear structure that are used to describe various modes of nuclear excitation, v) provide insight into some of the steps in the production of semiconductor devices. In addition, the programme is developed to give a detailed theoretical exposure and free-hands experience on practical parts of the study in order to impart skills of Physics to the learners.

e. Instructional Design:

e. 1. Curriculum Design:

Sl.	Course	Title of the Course	Marks (Credit
No.	Code		CIA	ESE	ТОТ	
	NO.					
		FIRST YEAR				
		I SEMESTER				
1	34511	Classical Mechanics	25	75	100	4
2	34512	Mathematical Physics - I	25	75	100	4
3	34513	Linear and Integrated Electronics	25	75	100	4
4	34514	Advanced Electronics and Physics Laboratory - I	25	75	100	4
	1	Total	100	300	400	16
		II SEMESTER			1	
5	34521	Quantum Mechanics - I	25	75	100	4
6	34522	Mathematical Physics - II	25	75	100	4
7	34523	Electromagnetic Theory	25	75	100	4
8	34524	Advanced Electronics and	25	75	100	4
		Physics Laboratory - II				
		Total	100	300	400	16
		SECOND YEAD	R			
		III SEMESTER	ł			
9	34531	Molecular Spectroscopy	25	75	100	4
10	34532	Quantum Mechanics - II	25	75	100	4
11	34533	Microprocessor and	25	75	100	4
		Electronic Instrumentation				
12	34534	Advanced Electronics and	25	75	100	4
		Total	100	200	400	16
				300	400	10
IV SEMESTER						
13	34541	Condensed Matter Physics	25	75	100	4
14	34542	Nuclear and Particle Physics	25	75	100	4
15	34543	Materials Science	25	75	100	4
16	34544	Advanced Electronics and	25	75	100	4
		Physics Laboratory - IV	400		46.0	
Total			100	300	400	16

Course Code Legend:

3	4	5	X	Y
---	---	---	---	---

345 - M.Sc. Physics Programme

X - Semester No.

Y - Course number in the semester

CIA: Continuous Internal Assessment, ESE: End Semester Examination, TOT: Total

No. of Credits per Course (Theory):	4
No. of Credits per Course (Practical):	4
Total No. of Credits per Semester:	16
Total No. of Credits for the Programme:	64 (16 credits \times 4 semesters)

e. 2. Detailed Syllabi:

I SEMESTER

34511	CLASSICAL MECHANICS		
Objectives	The objective of the syllabus is to impart knowledge to the students on the basic ideas of classical mechanics and its applications.		
Outcome On successful completion of the course, a student will be able to			
	• Explain clearly the notion of degrees of freedom and identify them for a given mechanical system		
	• Explain clearly the notion of degrees of phase space		
	• Demonstrate an understanding of intermediate classical mechanics topics such as coordinate transformations, oscillatory motion, gravitation and other central forces, and Lagrangian mechanics		
Schedule	Contact Hours: 16 hours		
Prerequisite	Basic knowledge on Newton's laws, simple and compound pendulum, moment of inertia, relativity theory, energy and oscillator are prerequisite.		
	BLOCK I : LAGRANGE AND HAMILTON EQUATIONS		
UNIT I	NEWTON'S LAWS OF MOTION		
	Introduction – Newton's laws of motion- Kepler's laws of planetary motion- stability of orbit- Classification of a Dynamical System.		
UNIT II	LAGRANGE EQUATION		
	Lagrange's Equations for Simple Systems – Principle of Virtual Work – D'Alembert's principle – Lagrange's Equations for General Systems.		
UNIT III	HAMILTON EQUATION		
	Hamilton's Equations – Ignorable Coordinates – The Routhian Function.		
UNIT IV	HAMILTONIAN METHODS		
	Introduction – Hamilton's principle – Hamilton's Principle for a Conservative System – Principle of Least Action.		
	BLOCK II: HAMILTONIAN METHODS		
UNIT V	HAMILTON-JACOBI THEORY		

	Characteristic Function and Hamilton-Jacobi Equation.	
UNIT VI	CANONICAL TRANSFORMATIONS	
	Phase Space and Liouville's Theorem – Special Transformations – Lagrange Brackets – Poisson Bracket – Calculus of Variations.	
	BLOCK III: KINEMATICS OF RIGID BODY MOTION AND SPECIAL THEORY	
UNIT VII	KINEMATICS OF RIGID BODY MOTION	
	Moments and Products of Inertia – Moment of Inertia of a Body about any Line – Through the origin of coordinate frame – The momental Ellipsoid – rotation Coordinate Axes.	
UNIT VIII	RIGID BODY EQUATIONS OF MOTION	
	Principal Axes and Principal Moments – Kinetic Energy of a Rigid Body Rotating about a Fixed Point – Angular Momentum of a Rigid Body – Eulerian Angles – The Compound Pendulum.	
UNIT IX	SPECIAL THEORY OF RELATIVITY	
	Some Fundamental Concepts: Theory of relativity, Equivalence of space and time.	
UNIT X	LORENTZ TRANSFORMATION	
	The Lorentz Transformation – Immediate Consequences of Lorentz transformations : contraction of length, time dilation, composition of velocities – The Mass of a Moving Particle – Equivalence of Mass and Energy.	
	BLOCK IV: SMALL OSCILLATIONS AND NORMAL MODES	
UNIT XI	ONE DIMENSIONAL OSCILLATOR	
	Potential Energy and equilibrium - one dimensional oscillator: stable, unstable and neutral equilibrium.	
UNIT XII	NORMAL MODES	
	Two coupled oscillators - normal coordinates and normal modes.	
UNIT XIII	GENERAL THEORY OF SMALL OSCILLATIONS	
	General theory of small oscillations: secular equation and eigenvalue equation.	

UNIT XIV	LINEAR TRIATOMIC MOLECULE		
	Small oscillations in normal coordinates - vibrations of a linear triatomic molecule.		
Book For Study	7		
1. Classical Mec	hanics, K. Sankara Rao, PHI Learning Private Limited – 2009, New Delhi.		
2. Classical Mec	hanics- J.C.Upadhyaya, Himalaya Publishing House-2 nd Edition, 2010.		
References			
1. Classical Me	1. Classical Mechanics- Herbert Goldstein –Pearson publishers-3rd Edition, 2011.		
2. Classical mechanics – S.L. Gupta, Meenakshi Prakashan, New Delhi, 1970.			
 Introduction to Classical Mechanics - R.G. Takwala and P.S. Puranik, Tata - McGraw Hill, New Delhi, 1980. 			
Mode of Evaluation	Assignment/Seminar/Written Examination		

34512	MATHEMATICAL PHYSICS – I	
Objectives	The main objective of this paper is to impart understanding on the fundamental thoughts of mathematical physics to the students.	
Outcome	On successful completion of the course, a student will be able to	
	• Master the basic elements of mathematical physics and demonstrate an ability to use vector analysis, matrices and special functions in the solution of physical problems	
Schedule	Contact Hours: 16 hours	
Prerequisite	Basic knowledge on vectors, matrix, integration, differentiation and Laplace transforms are prerequisite.	
	BLOCK I: VECTOR ANALYSIS	
UNIT I	VECTOR ANALYSIS	
	Introduction to vectors and product of vectors – Gradient, Divergence, curl.	
UNIT II INTEGRATION OF VECTORS		
	Gauss's Theorem – Stoke's Theorem – Potential Theory – Gauss's law and Poisson's Equation – Dirac Delta function.	
UNIT III	ORTHOGONAL CURVILINEAR COORDINATES	
	Special Coordinate systems – Circular, Cylindrical Coordinates – Orthogonal coordinates – Differential Vector Operators – Spherical Polar Coordinates.	
	BLOCK II: MATRICES	
UNIT IV	ALGEBRA OF MATRICES	
	Introduction to Matrix - Properties of matrix.	
UNIT V	RANK OF MATRIX	
	Rank of matrix and some of its theorems - Cramers rule - Characteristic equation.	
UNIT VI	EIGEN VALUES, EIGEN VECTOR, DIAGONALIZATION	

	Eigen values, eigenvectors, Orthogonal Matrices – Hermitian Matrices and Unitary Matrices – Diagonalization of Matrices - Solving differential equations.		
	BLOCK III: SPECIAL FUNCTIONS		
UNIT VII	GAMMA AND BETA FUNCTIONS		
	Gamma function - Beta function – Relation between Gamma and Beta function.		
UNIT VIII	LEGENDRE FUNCTION		
	Legendre's differential equation: Legendre polynomials - Generating functions - Recurrence relation - Rodrigue's formula – Orthogonality.		
UNIT IX	BESSEL'S FUNCTION		
	Bessel's differential equation: Bessel polynomials - Generating functions - Recurrence relation -Rodrigue's formula – Orthogonality.		
UNIT X	HERMITE FUNCTION		
	Hermite differential equation – Generating functions – Hermite polynomials - Recurrence relations – Rodrigue's formula – Orthogonality.		
UNIT XI	LAGUERRE FUNCTION		
	Laguerre differential equations – Generating functions - Laguerre polynomials - Recurrence relation - Rodrigue's formula – Orthogonality.		
	BLOCK IV: INTEGRAL TRANSFORMS		
UNIT XII	FOURIER TRANSFORM		
	Introduction and Definitions – Fourier Transforms – Development of the Inverse Fourier Transform – Fourier Transforms Inversion Theorem.		
UNIT XIII	FOURIER TRANSFORM OF DERIVATIVES		
	Fourier Transform of Derivatives – Convolution Theorem – Momentum Representation.		
UNIT XIV	LAPLACE TRANSFORM		

Laplace Transforms - Laplace Transform of Derivatives - Other
Properties - Convolution or Faltungs Theorem - Inverse Laplace
Transform-applications.

Book For Study

- 1. Essential Mathematical Methods for Physicists, George B. Arfken, Hanes J.Weber, Frank E. Harris, 7th Edition, Elsevier, 2012.
- 2. Advanced Engineering Mathematics, Erwin Kreyszig, 9th Edition, Wiley, 2014.

References

- 1. Mathematical Physics, B.D. Gupta, Vikas Publishing House Pvt. Ltd, 2010.
- 2. Mathematical Physics, Sathyaprakash, Sultan Chand, 2013.
- 3. Topics in Mathematical Physics-Parthasarathy H, Ane Books Pvt. Ltd. 2007.

Mode	of	Assignment/Seminar/Written Examination
Evaluation		

34513	LINEAR AND INTEGRATED ELECTRONICS	
Objectives	The objective of the course is to impart in depth knowledge about Semiconductors, Diodes, Transistors, Operational amplifiers, etc to the students. The theoretical knowledge gained in the class room can be experimented in the practical classes.	
Outcome	 On successful completion of the course, a student will be able to Discuss the op-amp's basic construction, characteristics, parameter limitations, various configurations and countless applications of op-amp Analyze and design basic op-amp circuits, particularly various linear and non-linear circuits, active filters, signal generators, and data converters 	
Schedule	Contact Hours: 16 hours	
Prerequisite	Basic knowledge on transistor, diode, amplifier, oscillators and semiconductor are prerequisite.	
	BLOCK I: SEMICONDUCTOR AND DIODE	
UNIT I	SEMICONDUCTOR PHYSICS	
	Introduction to semiconductor – Intrinsic and extrinsic semiconductors – PN junction.	
UNIT II	SEMICONDUCTOR DIODE	
	Forward and Reverse bias of diode – Characteristics of forward and reverse bias of diode – Zener diode, its construction and characteristics – Zener diode as voltage regulator.	
UNIT III	SPECIAL-PURPOSE DIODES	
	Schottky diode – Tunnel diode - LED's.	
	BLOCK II: TRANSISTOR BIASING AND AMPLIFIER	
UNIT IV	TRANSISTORS	
	Transistor action – Transistor connections: CB, CE and CC configurations.	
UNIT V	TRANSISTOR AMPLIFIER	
	Transistor as an amplifier: Class A, Class B and Class C operations and their field of application.	
UNIT VI	TRANSISTOR BIASING	

	Transistor biasing and stabilization – Need for biasing – DC load line – operating point – Bias stability – Transistor biasing circuits –Fixed bias circuit – Base bias with emitter feedback – Base bias with collector feedback – Voltage
	divider bias circuit.
UNIT VII	TRANSISTOR AUDIO POWER AMPLIFIER
	Class B push pull amplifier-Transformer coupled audio power amplifier.
	BLOCK III: OPTO ELECTRONIC DEVICES AND OSCILLATORS
UNIT VIII	FIELD EFFECT TRANSISTORS AND SILICON CONTROLLED RECTIFIER
	Construction, working and I/O characteristics of FET, JFET, MOSFET and SCR.
UNIT IX	POWER ELECTRONICS AND OPTO ELECTRONIC DEVICES
	Construction, working and I/O characteristics of DIAC and TRIAC, Solar cells, Photo detectors.
UNIT X	SINUSOIDAL OSCILLATORS
	Oscillator: Wien bridge – RC phase shift, Hartley, Colpitt's oscillators.
	BLOCK IV: OPERATIONAL AMPLIFIER
UNIT XI	OPERATIONAL AMPLIFIER
	Operational amplifier – Block diagram of OP-AMP – Equivalent circuit of IC 741.
UNIT XII	ELECTRICAL PARAMETERS OF OP-AMP
	Electrical parameters – Input offset voltage and current input bias current – Differential input resistance – Input capacitance – Output offset voltage and nullification – CMRR – Slew rate.
UNIT XIII	APPLICATIONS OF OP-AMP
	Applications of OP-AMP 741: Inverting, Non-inverting Amplifiers – Adder – Subtractor – Comparator – Differentiator – Integrator – Analog computation.
UNIT XIV	ACTIVE FILTERS
	Active filters: First order high pass and low pass filters, Band pass filter.

Books For Study

- 1. Electronic Principles Albert Malvino, David J Bates, 7th Edition, McGraw Hill. (2007).
- Op-Amps and linear integrated circuits Ramakant A.Gayakwad, 4th Edition, Prentice Hall. (2009).

References

- 1. Principles of Electronics V.K.Mehta, 6th Revised Edition, S.Chand and Company. (2001).
- 2. Electronic Devices and circuits David A.Bell, 4th Edition, Prentice Hall. (2007).

Mode of	Assignment/Seminar/Written Examination
Evaluation	

34514	ADVANCED ELECTRONICS AND PHYSICS LABORATORY - I
Objectives	The main objective of this practical paper is to exercise the practical in various advanced electronics and advanced analytical experiments to the students.
Outcome	On successful completion of the course, a student will be able to
	• Understand the basic operations in electronic circuits
	Develop the programming skills of Microprocessor
	Understand the concept of ICs manufacturing
	Appreciate the applications of Microprocessor programming
	• Understand the basic principles of the experiments
	Understand simple concepts to demonstrate an experiment
Schedule	Contact Hours: 120 hours
Prerequisite	Basic knowledge on transistor, diode, amplifier, oscillators, semiconductor, spectrometer and microscope are prerequisite.
	(Any Fifteen of the following)
	1. Study the characteristics of FET.
	2. Study the characteristics of transistor (CE mode).
	3. Study the characteristics of Zener diode and construct regulated DC power supply.
	4. Construct the logic gates using discrete components.
	5. Design of FET amplifier - CS Configuration.
	6. Characteristics of UJT.
	7. Relaxation oscillator (UJT).
	8. Transistor Astable multivibrator.
	9. Monostable multivibrator (Transistor).

10. Transistorized Hartely and Colpitt's audio oscillator.
11. Calibration of Spectrograph – Iron or Copper spectrum.
12. Michelson's Interferometer.
13. q, n, σ - Elliptical fringes.
14. q, n, σ - Hyperbolic fringes.
15. Ultrasonic Interferometer – Construction of oscillator and measurements.
16. Babinet's Compensator and study of polarized light.
17. G.M Counter – Statistical probability, Absorption measurements, Half life.
18. Any of the experiments of equal standard.

II SEMESTER

34521	QUANTUM MECHANICS-I
Objectives	The main objective of this paper is to impart knowledge on the fundamental aspects of quantum mechanics to the students.
Outcome	On successful completion of the course, a student will be able to
	• Know the background for the main features in the historical development of quantum mechanics
	• Discuss and interpret experiments displaying wavelike behaviour of matter, and how this motivates the need to replace classical mechanics by a wave equation of motion for matter (the Schrödinger equation)
	• Understand the central concepts and principles of quantum mechanics: the Schrödinger equation, the wave function and its physical interpretation, stationary and non-stationary states, time evolution and expectation values
Schedule	Contact Hours: 16 hours
Prerequisite	Basic knowledge on atom, particle and wave, light and time are prerequisite.
	BLOCK I: FOUNDATIONS
UNIT I	POSTULATES
	Wave particle duality – Uncertainty principle – applications – Postulates of quantum mechanics.
UNIT II	SCHRODINGER EQUATION
	Schrodinger equation – both time dependent and independent – Ehrenfest's theorem – eigen function and eigen vectors – probability density.
UNIT III	ONE DIMENSIONAL PROBLEM
	Applications to one dimensional problems: Linear harmonic oscillator and tunnel effect.
	BLOCK II: DISCRETE EIGEN VALUE PROBLEM
UNIT IV	THE FREE PARTICLE

	The free particle – Particle in a box.
UNIT V	THREE DIMENSIONAL PROBLEM
	Three dimensional harmonic oscillator – Rigid rotator.
UNIT VI	APPLICATION TO DIATOMIC MOLECULES
	Application to diatomic molecules – Hydrogen atom – Separation of variables and solution of R, θ, Φ equation – Discussion of bound states and parity.
	BLOCK III: REPRESENTATION THEORIES
UNIT VII	HORMONIC OSILLATOR
	Dirac's ket and bra vectors – Harmonic oscillator – Solution using ladder operator and matrix representation.
UNIT VIII	QUANTUM DYNAMICS
	Schrődinger, Heisenberg and interaction pictures.
UNIT IX	TIME INDEPENDENT PERTURBATION THEORY
	Perturbation theory (first order) – Time independent – Stark effect in hydrogen atom.
UNIT X	VARIATIONAL PRINCIPLE
	Variation method – Ground state of helium atom – Ground state of Deuteron.
UNIT XI	W.K.B APPROXIMATION
	W.K.B approximation – Application to bound states.
	BLOCK IV: TIME EVOLUTION
UNIT XII	TIME DEPENDENT PERTURBATION THEORY
	Time dependent perturbation theory – The golden rule and application – Spontaneous emission – Stimulated emission.
UNIT XIII	QUANTUM THEORY OF RADIATION
	Einstein's A & B coefficients – Semi – classical and quantum theory of radiation – Eigen value and Eigen function.

UNIT 2	XIV	THEORY OF SCATTERING	
		Rayleigh and Raman scattering – Selection rules.	
Books l	For St	udy	
1. Q	Juantur	n Mechanics I: The Fundamentals, S. Rajasekar, R. Velusamy, CRC	
-	Press, 2	2015	
2.	A text book of Quantum Mechanics – P.M Mathews and K.Venkatesan, McGraw Hill, New Delhi 1975.		
3.	Quantum Mechanics – G.Aruldhas – PHI Learning Private Limited, New Delhi 2009.		
4.	Quantı 2005.	Mechanics - V.Devanathan, Alpha Science International, Limited,	
References			
1.	1. Quantum Mechanics – L.Schiff, Mc Graw Hill, 1968.		
2.	Quantum Mechanics – J.P.Dicke and R.H.Wittke, Addison Wiley, 1978.		
3.	. Quantum Mechanics - A.K. Ghatak and Lokanathan, McMillan, 1977.		
4. Quantum Mechanics – R.Shankar, Springer, 1994.			
Mode of EvaluationAssignment/Seminar/Written Examination		Assignment/Seminar/Written Examination	

34522	MATHEMATICAL PHYSICS – II	
Objectives	The main objective of this paper is to impart understanding on the fundamental thoughts of mathematical physics to the students.	
Outcome	On successful completion of the course, a student will be able to	
	• Create and solve mathematical models of physical phenomena using analytic and numerical methods	
	• Design, execute, and interpret experiments to test hypotheses and mathematical models	
Schedule	Contact Hours: 16 hours	
Prerequisite	Basic knowledge on vectors, matrix, integration, differentiation and Laplace transforms are prerequisite.	
BLOCK I: COMPLEX VARIABLE		
UNIT I		
	Cauchy-Riemann Conditions – Cauchy's Integral Formula – Laurent Expansion – Mapping – Conformal Mapping.	
UNIT II	CALCULUS OF RESIDUES	
	Singularities – Calculus of Residues and contour integrals – Method of Steepest Descents.	
BLOCK II: APPLICATION OF PARTIAL DIFFERENTIAL EQUATIONS AND ORTHOGONAL FUNCTIONS		
UNIT III	SEPERATION OF VARIABLES	
	Heat equation – Laplace and Poisson equation - wave equation - separation of variables.	
UNIT IV	STURM LIOUVILLE PROBLEM	
	Green's Function – Sturm-Liouville theory - Self – Adjoint PDEs.	
UNIT V	ORTHOGONALIZATION PROCESS	
	Hermitian Operators – Gram-Schmidt Orthogonalization – Completeness of Eigen Functions.	
BLOCK III: TENSOR ANALYSIS		
UNIT VI	INTRODUCTION TO TENSOR	

	Introduction – The Algebra of Tensors – Quotient law – Cartesian Tensors.
UNIT VII	COVARIANT FORMULATION OF TENSORS
	Four vectors in special relativity – Covariant formulation of electrodynamics.
UNIT VIII	DUAL AND METRIC TENSORS
	Dual tensors, irreducible tensors - Metric Tensors - Christoffel symbols - Geodesics.
	BLOCK IV: GROUP THEORY AND PROBABILITY
UNIT IX	INTRODUCTION TO GROUP THEORY
	Definition of group – Homomorphism and Isomorphism.
UNIT X	MATRIX REPRESENTATION OF GROUP THEORY
	Matrix Representations: Reducible and Irreducible – Proof of the Orthogonality theorem.
UNIT XI	ROTATION GROUPS
	Rotation groups SO(2) and SO(3) – Special Unitary group SU(2) – The Character of a Representation – Construction of Character Tables.
UNIT XII	PHYSICAL APPLICATIONS OF GROUP THEORY
	Physical applications of group theory: Crystal – Symmetry operators – Crystallographic Point Groups.
UNIT XIII	THEORY OF PROBABILITY
	Probability Definitions, Simple Properties – Random Variables.
UNIT XIV	PROBABILITY DISTRIBUTION
	Binomial Distribution – Poisson Distribution – Gauss's Normal Distribution – Central limit theorem.
Books For Study	
1. Essential Mathematical Methods for Physicists, George B. Arfken, Hanes J.Weber, Frank E. Harris, 7 th Edition, Elsevier, 2012.	
2. Advanced Engineering Mathematics, Erwin Kreyszig, 9th Edition, Wiley, 2014.	

References

- 1. Mathematical Physics, B.D. Gupta, Vikas Publishing House Pvt. Ltd, 2010.
- 2. Mathematical Physics, Sathyaprakash, Sultan Chand, 2013.

3. Topics in Mathematical Physics-Parthasarathy H, Ane Books Pvt.Ltd 2007.

5. Chemical Applications of Group Theory, F. Albert Cotton, Addison Wiley, 2006.

Mode	of	Assignment/Seminar/Written Examination
Evaluation	n	

34523	ELECTROMAGNETIC THEORY
Objectives	The main objective of this paper is to impart the understanding on the fundamental aspects of electromagnetic theory to the students.
Outcome	On successful completion of the course, a student will be able to
	• Describe the electro and magnetostatics Maxwell's equations and propagation of EM waves
	• Describe the reflection, refraction, dispersion and scattering of electromagnetic waves
Schedule	Contact Hours: 16 hours
Prerequisite	Basic knowledge on reflection, refraction, dispersion, scattering and microwaves are prerequisite.
	BLOCK 1: ELECTRO AND MAGNETOSTATICS MAXWELL'S EQUATIONS AND PROBAGATION OF EM WAVES
UNIT I	ELECTRO AND MAGNETOSTATICS
	Basics-Electrostatics and Magnetostatics Wave equation in terms of scalar and vector potential – Transverse nature of electromagnetic wave.
UNIT II	FIELD EQUATIONS AND CONSERVATION LAWS
	Maxwell's equations – Poynting theorem - Conservation of energy and momentum, continuity equation.
UNIT III	ELECTROMAGNETIC WAVES AND WAVE PROPAGATION
	Propagation of plane electromagnetic waves in (a) free space, (b) Isotropic and Anisotropic non- conducting medium and (c) conducting medium-skin depth.
	BLOCK II: REFLECTION AND REFRACTION OF ELECTROMAGNETIC WAVES
UNIT IV	REFLECTION AND REFRACTION OF ELECTROMAGNETIC WAVES
	Boundary conditions at the surface of discontinuity - Reflection and refraction of electromagnetic waves at the interface of non-conducting media.
UNIT V	FRESNEL'S EQUATION

	Fresnel's equations – Reflection and transmission coefficients at the interface between two dielectric media.
UNIT VI	POLARIZATION
	Brewster's law and degree of polarization -Total internal reflection.
	BLOCK III: DISPERSION AND SCATTERING OF EM WAVES
UNIT VII	DISPERSION OF ELECTROMAGNETIC WAVES
	Normal and Anomalous dispersion – Dispersion in Gases – Experimental demonstration of Anomalous dispersion in gases- Solids and Liquids.
UNIT VIII	CLASUSIUS MOSSOTTI EQUATION
	Clasusius-Mossotti relation – Lorentz formula.
UNIT IX	SCATTERING OF ELECTROMAGNETIC WAVES
	Scattering and scattering parameters - Theory of scattering of e-m waves – polarization of scattered Light – coherence and incoherence of scattered light.
	BLOCK IV: MICROWAVES, DYNAMICS OF CHARGED PARTICLES AND PLASMA PHYSICS
UNIT X	WAVE GUIDES
	Wave guides: Rectangular and cylindrical waveguides.
UNIT XI	MICROWAVES
	Generation of microwaves – Klystron – Magnetron – Gunn diodes – Resonant cavities.
UNIT XII	DYNAMICS OF CHARGED PARTICLES
	Lienard-Wiechert potential-E.M fields from retarded potentials of moving point charge-e.m. fields of uniformly moving point charge- Radiation from moving charges.
UNIT XIII	PLASMA PHYSICS
	Introduction - Conditions for plasma existence – occurrence of plasma – charged particles in uniform constant electric field, in homogeneous magnetic fields, simultaneous homogeneous electric and magnetic fields, in perhomogeneous magnetic fields

UNIT	XIV	MAGNETOHYDRODYNAMICS	
		Magnetohydrodynamics – magnetic confinement -pinch effect- Instabilities- plasma waves.	
Book 3	Book For Study		
1.1	Electron Ramna	magnetic theory and Electrodynamics – Satya Prakash, Kedarnath ath & Co, 2007	
2. 1	2014.	ction to Electrodynamics- D.J.Griffith, Pearson Education Ltd4 th Edn.,	
Refere	ences		
1.	1. Electromagnetics – Kraus & Carver, TMH, 1973.		
2.	. Electromagnetic fields and waves – Paul Lorain & Dale R.Corson, CBS publishers, NewDelhi, 1986.		
3.	 Foundations of Electromagnetic theory – Reitz, Milford & Frederick, Narosa publishing House, 1986. 		
4.	4. Introduction to electromagnetic theory- Chopra and Agarwal, (1984).		
5.	 Classical Electrodynamics, J.D.Jackson, Wiley Eastern Limited, New Delhi, 1978. 		
Mode Evalua	Mode of EvaluationAssignment/Seminar/Written Examination		

34524	ADVANCED ELECTRONICS AND PHYSICS LABORATORY - II
Objectives	The main objective of this practical paper is to exercise the practical in various advanced electronics and advanced analytical experiments to the students.
Outcome	 On successful completion of the course, a student will be able to Understand the basic operations in electronic circuits Develop the programming skills of Microprocessor Understand the concept of ICs manufacturing Appreciate the applications of Microprocessor programming Understand the basic principles of the experiments Understand simple concepts to demonstrate an experiment
Schedule	Contact Hours: 120 hours
Prerequisite	Basic knowledge on transistor, diode, amplifier, oscillators, semiconductor, spectrometer and microscope are prerequisite.
	(Any Fifteen of the following)
	1. Half adders and Full adders.
	2. Integrator and Differentiator circuits using IC 741.
	3. Active filters using IC 741.
	4. D/A converters (a) Ladder network (b) Weighted resistor method.
	5. A/D converter.
	6. Encoder - Decoder circuits.
	7. Square wave, Sine wave and Triangular wave generators using IC.
	8. Multiplexer circuits.
	9. Flip – Flop circuits using IC.
	10. Powder photograph – X-ray method.

11. Resistivity measurements of thin films.
12. Hall effect – Mobility and Hall constant determination.
13. Dielectric constant – Microwave frequency using klystron.
14. Determination of Curie point – Ferromagnetic material.
15. Susceptibility by Guoy's method.
16. Susceptibility by Quincke's method.
17. Reflection grating spectrometer.
18. Any of the experiments of equal standard.

III SEMESTER

34531	MOLECULAR SPECTROSCOPY
Objectives	The main objective of this paper is to impart understanding on the fundamental thoughts of Atomic and Molecular Spectroscopy in physics to the students.
Outcome	 On successful completion of the course, a student will be able to Appreciate the principles of spectroscopy in the different regions of the electromagnetic spectrum Apply the concepts of group theory to molecular vibrations Relate the theory of spectroscopy to the study of molecular structure
Schedule	Contact Hours: 16 hours
Prerequisite	Basic knowledge on bonding in solids and spectroscopy are prerequisite.
	BLOCK I: SYMMETRY ASPECTS OF MOLECULAR ORBITALS AND ROTATIONAL SPECTRA
UNIT I	MOLECULAR ORBITAL THEORY
	Valence bond theory – Molecular orbital theory- Heitler London theory for Hydrogen molecule - Hybridization – $SP - SP^2 \& SP^3$ Hybrids.
UNIT II	ROTATIONAL SPECTRA OF DIATOMIC MOLECULE
	Rotational energy of a diatomic molecule – Rigid and non-rigid rotators – isotopic substitution.
UNIT III	STARK EFFECT
	Stark effect – its importance in microwave spectroscopy – quadrupole hyperfine interaction.
UNIT IV	ROTATIONAL SPECTRA OF POLYATOMIC MOLECULES
	Rotational spectra of polyatomic molecules – pure rotational Raman spectra – diatomic linear molecule – symmetric top molecules.
UNIT V	MOLECULAR STRUCTURE
	Molecular structure – using IR & Raman spectroscopy.
	BLOCK II: VIBRATIONAL PROPERTIES
UNIT VI	VIBRATIONAL SPECTRA
	Vibrational spectra of diatomic and polyatomic molecules – Information on molecular constitution from IR studies.
UNIT VII	VIBRATIONAL RAMAN SPECTRA

	Vibrational Raman spectra – Vibrational course structure – Rotational course spectra.	
UNIT VIII	FRANCK-CONDON PRINCIPLE	
	Franck – Condon principle – intensity distribution – portrait parabolae – disassociation - predisassociation – mutual exclusion principle.	
	BLOCK III: NON LINEAR SPECTROSCOPIC PHENOMINA	
UNIT IX	HYPER RAMAN EFFECT	
	Non linear Raman Phenomena-Hyper Raman effect- Classical treatment – Experimental techniques- Stimulated Raman Scattering.	
UNIT X	INVERSE RAMAN EFFECT	
	Inverse Raman Effect-Coherent Anti-Stoke's Raman Scattering-Photo acoustic Raman Scattering.	
UNIT XI	MULTIPHOTON SPECTROSCOPY	
	Multi photon spectroscopy-two photon absorption- Multiphoton absorption. X-ray spectra; rotational and vibrational spectra of diatomic molecules.	
	BLOCK IV: RESONANCE SPECTROSCOPY	
UNIT XII	NUCLEAR RESONANCE	
	Interaction between spin and magnetic field – Nuclear resonance – Bloch equations - Chemical shift – Dipole –Dipole interaction and spin lattice interaction.	
UNIT XIII	ESR AND NQR SPECTROSCOPY	
	ESR-NQR (principle only) spectroscopy and its application.	
UNIT XIV	MOSSBAUER SPECTROSCOPY	
	Mossbauer spectroscopy - applications – Electronic structure – molecular structure – crystal symmetry and molecular structures.	
Book For Stu	ıdy	
1. Handt David	book of Spectroscopy,1- 4 Volume, 2nd Edition., 2014, Gunter Gauglitz , S. Moore , John Wiley & Sons, Inc.,	
2. Atomi Kakka	c and Molecular Spectroscopy Basic Concepts and Applications, By Rita r, 2015 Cambridge University Press.	
3. Conde Kelley	ensed-Phase Molecular Spectroscopy and Photophysics, Anne Myers v, 2012, Wiley.	
4. Raman 2012,	 Raman Spectroscopy and its Application in Nanostructures, Shu-Lin Zhang, 2012, John Wiley & Sons, Inc., 	

References		
1.	Handb John V	ook of High-resolution Spectroscopy, Martin Quack , Frederic Merkt, 2011, Viley & Sons, Inc.,
2.	Ramar Ozaki	n, Infrared, and Near-Infrared Chemical Imaging, Slobodan Sasic , Yukihiro , 2010, John Wiley & Sons, Inc.,
3.	Molect Delhi -	ular structure and spectroscopy, G.Aruldhass, Prentice Hall of India, New - 2001.
4.	Atomi	c and Molecular Spectroscopy, Mool Chand Guptha, New age International
	Publis	hers, New Delhi, (2001).
5.	Instrum 2001.	nental methods of Chemical analysis, H.Gaur, Prgati Prakasan, Ist Edition,
6.	Princip	bles of Instrumental Analysis, Skoog, Holler and Nieman, Harcourt College
	Publisl	hers, 5th edition, 2003.
7.	Instrumental methods of analysis, Willard et al., CBS publishers, 2005.	
8.	Hand book of analytical instrumentation, R.S. Khandapur, McGraw Hill, (2006).	
9.	9. Chemical Applications of Group Theory F.A.Cotton (2009) Wiley student edition.	
Mode of EvaluationAssignment/Seminar/Written Examination		Assignment/Seminar/Written Examination

34532	QUANTUM MECHANICS-II
Objectives	The main objective of this paper is to impart in depth knowledge on the advanced theories of quantum mechanics to the students.
Outcome	On successful completion of the course, a student will be able to
	• Apply principles of quantum mechanics to calculate observables on known wave functions
	• Grasp the concepts of spin and angular momentum, as well as their quantization- and addition rules
	• Explain physical properties of elementary particles, nucleons, atoms, molecules and solids (band structure) based on quantum mechanics
Schedule	Contact Hours: 16 hours
Prerequisite	Basic knowledge on uncertainty and quantum concepts are prerequisite.
	BLOCK I: THEORY OF ANGULAR MOMENTUM
UNIT I	ANGULAR MOMENTUM
	Angular momentum of a system of particles – Commutation relations.
UNIT II	MATRIX REPRESENTATION OF ANGULAR MOMENTUM
	Matrix representation of angular momentum – Pauli spin matrices.
UNIT III	ADDITION OF ANGULAR MOMENTA
	Addition of two angular momenta – C.G. coefficients for $j = \frac{1}{2}$ system only.
	BLOCK II: SELF CONSISTENT FIELD
UNIT IV	CENTRAL FIELD APPROXIMATION
	Central field approximation – Thomson-Fermi Model of the Atom.
UNIT V	IDENTICAL PARTICLES
	Identical particles – Bosons and fermions – Symmetric and anti- symmetric wave functions.
UNIT VI	HARTREE EQUATION

	Hartree equation – Hartree-Fock Equation – Alkali atoms Doublet intensity and doublet separation - Periodic Table.
	BLOCK III: RELATIVISTIC QUANTUM MECHANICS
UNIT VII	KLEIN-GORDAN EQUATION
	Klein-Gordan equation – Application to Hydrogen atom.
UNIT VIII	RELATIVISTIC HAMILTONIAN
	Dirac's Relativistic Hamiltonian – Dirac matrices and properties.
UNIT IX	DIRAC PARTICLE
	Spin of a Dirac particle – Negative energy states.
	BLOCK IV:ELEMENTS OF FIELD QUANTIZATION AND SCATTERING THORY
UNIT X	RELATIVISTIC AND NON-RELATIVISTIC FIELD
	Elements of field quantization for non-relativistic field – Quantization of relativistic field.
UNIT XI	KLEIN-GORDAN FIELD
	Klein Gordon field - Dirac Field – Quantization of Electromagnetic field.
UNIT XII	SCATTERING CROSS SECTION
	Scattering cross section – scattering amplitude.
UNIT XIII	BORN APPROXIMATION
	Optical Theorem – Born approximation.
UNIT XIV	DIFFUSION SCATTERING
	Scattering by screened Coulomb potential – Diffusion Scattering – Particle wave analysis.
Book For Study	

- 1. Quantum Mechanics II: Advanced Topics, S.Rajasekar, R.Velusamy, CRC Press, 2015.
- 2. Quantum mechanics L.Schiff, Mc-Graw Hill, 1968.
- 3. Quantum mechanics B.N.Srivastava, Pragati prakashan, 1975.
- 4. Text book of quantum mechanics, P.M. Mathews and K.Venkatesan, McGraw Hill, New Delhi, 1975.
- 5. Quantum Mechanics G.Aruldhas PHI Learning Private Limited, New Delhi 2009.

References

- 1. Quantum mechanics V.K. Thangappan, Wiley Eastern, 1985.
- 2. Quantum electrodynamics P. G. Puranik, S.Chand & co, 1980.
- 3. A text book of quantum mechanics A.K. Ghatak & Lokanathan, Mc Millan, 1977.
- 4. Quantum mechanics- Devanathan, Alpha Science International Ltd, United Kingdom (2011).

Mode of	Assignment/Seminar/Written Examination
Evaluation	

34533	MICROPROCESSOR AND ELECTRONIC INSTRUMENTATION
Objectives	This course is designed to provide students with the necessary foundation for entry-level industrial applications in process monitoring and controlling, with an emphasis on analysis, problem solving, exposure to open-ended problems and design methods. At the end of the course, students will be able to design an application based on microcontrollers or microprocessors.
Outcome	On successful completion of the course, a student will be able to
	Develop the programming skills of microprocessor
	Appreciate the applications of microcontroller programming
Schedule	Contact Hours: 16 hours
Prerequisite	Basic knowledge on instrumentation and programming are prerequisite.
	BLOCK I:MICROPROFESSOR ARCHITECTURE (8085 AND 8086)
UNIT I	MICROPROCESSOR ARCHITECTURE (8085)
	Introduction, Intel 8085 : Architecture, Instruction Cycle, Timing Diagram: Op-code fetch, Memory read & Memory write – Instruction Set : Instruction and Data Format, Addressing Modes, Status Flags, Instructions Set, Data Transfer, Arithmetic, Branching, and Logical group operations – Interrupts.
UNIT II	MICROPROCESSOR ARCHITECTURE (8086)
	Architecture of 8086, Pin diagram and pin function, Register organization, Minimum and Maximum mode operation of 8086.
	BLOCK II: PROGRAMMING OF MICROPROCESSOR AND MICRO- CONTROLLER
UNIT III	INSTRUCTIONS (8085)
	Instructions for 8085 – Software development tools – Assembly language programs with data transfer, arithmetic, logical, bit level instructions and branch instructions.
UNIT IV	INTERRUPTS AND STACK OPERATIONS OF 8085
	Interrupts and interrupt service routines-Subroutine – Flow charting – Loops – Pseudo instructions – Stack Operations- Programming and applications: Traffic control system.

UNIT VI	MICRO-CONTROLLER 8051
	Introduction to 8 bit micro-controller, Architecture of 8051- Hardware features of 8051 - Signal description of 8051-General Purpose and Special Function Registers- Oscillator and clock circuit-I/O Port-Memory organization and I/O addressing by 8051, Interrupts of 8051.
UNIT VI	8051 INSTRUCTION SET AND PROGRAMMING
	Instructions set of 8051-Programming of 8051 (Simple Arithmetic and Logical programs).
	BLOCK III:INTERFACING DEVICES
UNIT VII	INTRODUCTION TO INTERFACING DEVICES
	Address space partition - Memory & I/O Interfacing – Data transfer schemes – Interrupts - I/O Ports.
UNIT VIII	INTERFACING DEVICES (8255 AND 8259)
	Programmable Peripheral Interface:8255 – Programmable Interrupt Controller :8259.
UNIT IX	INTERFACING DEVICES (8257 AND 8251)
	Programmable DMA Controllers:8257 – Programmable Communication Interface:8251.
UNIT X	MICROPROCESSOR APPLICATIONS
	A/D Sub systems - Applications – Temperature monitoring and Stepper motor control.
	BLOCK IV: ELECTRONIC INSTRUMENTATION
UNIT XI	AMPLIFIERS AND COMPARATORS
	Instrumentation amplifiers, Sample and hold circuits, Comparators, – D/A – Weighted resistor method – Resistor ladder net work method – A/D – Successive approximation method.
UNIT XII	TEMPERATURE TRANSDUCERS
	Classification of transducers - Temperature transducers: thermo-resistive transducers, thermoelectric, p-n junction, chemical thermometry.
UNIT XIII	DISPLACEMENT TRANSDUCERS

	Displacement transducers: potentiometer, resistive strain gauges, capacitive displacement transducer, LVDT transducers.	
UNIT XIV	PHOTOELECTRIC TRANSDUCERS	
	Photoelectric transducers: photovoltaic cell, photoconductive cell- Piezoelectric transducers.	
Book For Stu	ıdy	
 Fundamentals of Microprocessors and Microcomputers - B. Ram, 8th Edition, Dhanpat Rai Publications (P) Ltd., New Delhi, 2010. 		
2. Microp Hill Ed	 Microprocessors and Microcontrollers – A.Nagoor Kani, , 2nd Edition, Mc Graw Hill Education, 2012. 	
3. Transc Private	 Transducers and Instrumentation, D.V.S.Murthy, 2nd Edition, PHI Learning Private Limited -New Delhi, 2008. 	
References		
 Microprocessor Architecture, Programming and Applications- R. Gaonkar, Pearson, 1998 		
 Advanced Microprocessor and Principles- A.K. Ray, K.M. Bhurchandi, 3rd Edition, Tata Mc Graw Hill Publication Co. Ltd. New Delhi. 2003. 		
Mode of Evaluation	Assignment/Seminar/Written Examination	

34534	ADVANCED ELECTRONICS AND PHYSICS LABORATORY - III
Objectives	The main objective of this practical paper is to exercise the practical in various advanced electronics and advanced analytical experiments to the students.
Outcome	 On successful completion of the course, a student will be able to Understand the basic operations in electronic circuits Develop the programming skills of Microprocessor Understand the concept of ICs manufacturing Appreciate the applications of Microprocessor programming Understand the basic principles of the experiments Understand simple concepts to demonstrate an experiment
Schedule	Contact Hours: 120 hours
Prerequisite	Basic knowledge on transistor, diode, amplifier, oscillators, semiconductor, spectrometer and microscope are prerequisite.
	(Any Fifteen of the following)
	1. Study of Counters.
	2. Monostable multivibrator using op-amp.
	3. Astable multivibrator using op-amp and using IC 555.
	4. Schmitt trigger using op-amp.
	5. Voltage comparator.
	6. Demultiplexer.
	7. Logic gates using IC's.
	8. Young's modulus – Cornu's method.
	9. Refractive index of liquid by laser.

10. Optical absorption studies using lasers.
11. Determination of wavelength of a laser source by diffraction grating.
12. Determination of Charge of an electron using spectrometer.
13. Thermal expansion using optical air wedge.
14. Ultrasonic interferometer.
15. Electron spin resonance spectrometer.
16. Magnetic Hystersis loop tracer.
17. Measurements and inverse square law verification.
18. Any of the experiments of equal standard.

IV SEMESTER

34541	CONDENSED MATTER PHYSICS
Objectives	The objective of the course is to impart knowledge about crystalline structures, lattice vibrations, dielectrics, magnetism and superconductivity to the students. Understanding the content of this course will be useful for the students to carry out research work after the completion of Master's degree.
Outcome	On successful completion of the course, a student will be able to
	• Calculate reciprocal lattice vectors for typical high symmetrical crystals and the relationship between Miller indices (hkl) and the distance between the lattice planes is to be understood
	• Energy band structure should be explained in terms of the periodic potential and illustrated by using Kronig-Penny model
	• Classification into metals, semiconductors and insulators anchored in the energy band structure
Schedule	Contact Hours: 16 hours
Prerequisite	Basic knowledge on bonding in solids and crystal structure are prerequisite.
	BLOCK I: CRYSTAL STRUCTURE AND LATTICES
UNIT I	BLOCK I: CRYSTAL STRUCTURE AND LATTICES CRYSTAL STRUCTURE
UNIT I	BLOCK I: CRYSTAL STRUCTURE AND LATTICES CRYSTAL STRUCTURE Crystalline solids – Crystal lattice and crystal structure, Symmetry elements, Ordered Phase of Matter.
UNIT I UNIT II	BLOCK I: CRYSTAL STRUCTURE AND LATTICES CRYSTAL STRUCTURE Crystalline solids – Crystal lattice and crystal structure, Symmetry elements, Ordered Phase of Matter. CRYSTAL SYSTEMS
UNIT I	BLOCK I: CRYSTAL STRUCTURE AND LATTICES CRYSTAL STRUCTURE Crystalline solids – Crystal lattice and crystal structure, Symmetry elements, Ordered Phase of Matter. CRYSTAL SYSTEMS Translation & Orientation Order, Space lattice, Unit cell and primitive cell – Bravais lattice, Crystal systems.
UNIT II UNIT II	BLOCK I: CRYSTAL STRUCTURE AND LATTICESCRYSTAL STRUCTURECrystalline solids – Crystal lattice and crystal structure, Symmetry elements, Ordered Phase of Matter.CRYSTAL SYSTEMSTranslation & Orientation Order, Space lattice, Unit cell and primitive cell – Bravais lattice, Crystal systems.LATTICES
UNIT II UNIT III	BLOCK I: CRYSTAL STRUCTURE AND LATTICESCRYSTAL STRUCTURECrystalline solids – Crystal lattice and crystal structure, Symmetry elements, Ordered Phase of Matter.CRYSTAL SYSTEMSTranslation & Orientation Order, Space lattice, Unit cell and primitive cell – Bravais lattice, Crystal systems.LATTICESType of lattices: SC, BCC, FCC, HCP – Miller indices – Reciprocal lattice - Wigner-seitz cells – bonding in solids.
UNIT II UNIT III	BLOCK I: CRYSTAL STRUCTURE AND LATTICESCRYSTAL STRUCTURECrystalline solids – Crystal lattice and crystal structure, Symmetry elements, Ordered Phase of Matter.CRYSTAL SYSTEMSTranslation & Orientation Order, Space lattice, Unit cell and primitive cell – Bravais lattice, Crystal systems.LATTICESType of lattices: SC, BCC, FCC, HCP – Miller indices – Reciprocal lattice - Wigner-seitz cells – bonding in solids.BLOCK II: LATTICE VIBRATIONS, BAND THEORY OF SOLIDS AND DIELECTRIC PROPERTIES OF MATERIALS
UNIT II UNIT III UNIT III UNIT III UNIT III	BLOCK I: CRYSTAL STRUCTURE AND LATTICESCRYSTAL STRUCTURECrystalline solids – Crystal lattice and crystal structure, Symmetry elements, Ordered Phase of Matter.CRYSTAL SYSTEMSTranslation & Orientation Order, Space lattice, Unit cell and primitive cell – Bravais lattice, Crystal systems.LATTICESType of lattices: SC, BCC, FCC, HCP – Miller indices – Reciprocal lattice - Wigner-seitz cells – bonding in solids.BLOCK II: LATTICE VIBRATIONS, BAND THEORY OF SOLIDS AND DIELECTRIC PROPERTIES OF MATERIALSLATTICE VIBRATIONS

UNIT V	FREE ELECTRON FERMI GAS
	Electrical properties of metals – Free electron gas in three dimensions –
	Fermi energy – Hall effect.
UNIT VI	BAND THEORY OF SOLIDS
	Band theory of solids – Kronig–Penny model – Semiconductors – Classification – Fermi energies of impurity semiconductors.
UNIT VII	DIELECTRIC PROPERTIES OF MATERIALS
	Polarization – Local electric field, Clausius-Mosotti relation – Polarization field – Lorentz field.
UNIT VIII	DIELECTRIC CONSTANT AND POLARIZABILITY
	Dielectric constant – Polarizability: Electronic, Ionic- Piezo – Pyro and ferro electric properties of crystals.
	BLOCK III: MAGNETISM
UNIT IX	PARAMAGNETISM
	Classification of magnetic materials – Langevin's theory of paramagnetism – Quantum theory of paramagnetism.
UNIT X	FERROMAGNETISM
	Ferromagnetism – Weiss Molecular Field Theory – Ferromagnetic domains.
UNIT XI	ANTIFERROMAGNETISM AND FERRIMAGNETISM
	Antiferromagnetism – Neel's Theory – Ferrimagnetism and ferrites.
UNIT XII	MAGNETIC MATERIALS
	Spin waves – Hard and soft magnetic materials.
	BLOCK IV: SUPERCONDUCTIVITY
UNIT XIII	SUPERCONDUCTIVITY – EXPERIMENTAL SURVEY
	Introduction – Meissner effect – Isotone effect – Type I and Type II
	superconductors.

London	equations –	Coher	rence length	– BCS	Theo	ory – C	looper pair –
Normal supercon	tunneling ductors.	and	Josephson	Effect	_	High	temperature

Book For Study

- 1. Solid State Physics Structure and properties of Materials M.A. Wahab, Second edition, Narosa publishers. 2005.
- Introduction to Solid State Physics Charles Kittel, 7th Edition, John Wiley & Sons. (1971).

References

- 1. Solid State Physics S.O. Pillai, Wiley Eastern Ltd. (2005).
- 2. Solid State Physics B.S. Saxena, R.C. Gupta and P.N. Saxena Pragati Prakasham Meerut.
- 3. Solid State Physics A.J. Dekkar, Macmillan India Ltd., 1600.
- 4. Solid State Physics S.L. Kahani, C. Hemaranjani Sulton Chand & Sons.

ModeofAssignment/Seminar/Written ExaminationEvaluation

34542	NUCLEAR AND PARTICLE PHYSICS
Objectives	The main objective of this paper is to impart understanding on the fundamental knowledge of Nuclear & particle physics to the students.
Outcome	 On successful completion of the course, a student will be able to Identify the fundamental models of nuclear structure that are used to describe various modes of nuclear excitation Lay out the foundation that allows interpreting the observations obtained in typical nuclear structure experiments
Schedule	Contact Hours: 16 hours
Prerequisite	Basic knowledge on particle, atom and nucleus are prerequisite.
	BLOCK I: NECLEAR DECAY AND NUCLEAR MODELS
UNIT I	NECLEAR DECAY – ALPHA AND GAMMA DECAY
	Gamow's Theory of Alpha decay – Gamma decay – Internal Conversion Nuclear Isomerism.
UNIT II	NECLEAR DECAY – BETA DECAY
	Fermi's theory of Beta decay – Kurie plots – Selection rules – Electron capture – Parity violation in Beta decay - Neutrinos – Measurement of neutrino helicity.
UNIT III	NUCLEAR LIQUID DROP AND COLLECTIVE MODELS
	Liquid Drop model – Bohr Wheeler theory – Schmidt lines – Magnetic dipole moment – Electric quadrupole moment – Collective Model.
UNIT IV	NUCLEAR SHELL MODEL
	Shell model – Single particle model, its validity and limitations – Rotational Spectra - Magic numbers – Spin – orbit coupling - Angular momentum of nucleus ground states – Magnetic Moments of the shell model.
	BLOCK II: NECLEAR FISSION, FUSION
UNIT V	NUCLEAR REACTION AND MECHANISM
	Nuclear Fission and Fusion. Nuclear reactions, reaction mechanisms, compound nuclei and direct reactions: Simple theory of deuteron – Tensor forces (qualitative).

UNIT VI	NUCLEAR FORCE
	Nature of nuclear force, form of nucleon-nucleon potential, charge independence and charge symmetry of nuclear forces - Normalization of deuteron wave functions.
UNIT VII	PARTIAL WAVE ANALYSIS
	Method of partial wave analysis and phase shifts - Effective range theory - n-p scattering at low energies- Yukawa's meson theory of nuclear forces.
	BLOCK III: REACTION CROSS SECTIONS AND NUCLEAR REACTORS
UNIT VIII	REACTION CROSS SECTIONS
	Nuclear cross sections – Compound nuclear formation and breakup – Resonance scattering cross section.
UNIT IX	NEUTRONS
	Interaction of neutron with matter – Thermal neutrons – neutron cycle in a thermo nuclear reactor – Critical size.
UNIT X	NUCLEAR REACTORS
UNIT X	NUCLEAR REACTORSTypes of nuclear reactors - cylindrical and spherical- sub-nuclear particles (elementary ideas only) - source of stellar energy - controlled thermo nuclear reactions.
UNIT X	NUCLEAR REACTORS Types of nuclear reactors - cylindrical and spherical- sub-nuclear particles (elementary ideas only) – source of stellar energy – controlled thermo nuclear reactions. BLOCK IV: ELEMENTARY PARTICLES
UNIT X UNIT XI	NUCLEAR REACTORS Types of nuclear reactors - cylindrical and spherical- sub-nuclear particles (elementary ideas only) – source of stellar energy – controlled thermo nuclear reactions. BLOCK IV: ELEMENTARY PARTICLES FUNDAMENTAL INTERACTIONS IN NATURE
UNIT X UNIT XI	NUCLEAR REACTORS Types of nuclear reactors - cylindrical and spherical- sub-nuclear particles (elementary ideas only) – source of stellar energy – controlled thermo nuclear reactions. BLOCK IV: ELEMENTARY PARTICLES FUNDAMENTAL INTERACTIONS IN NATURE Classification of fundamental forces – Particle Directory and quantum numbers (Charge, spin, parity, iso-spin, strangeness etc).
UNIT X UNIT XI UNIT XII	NUCLEAR REACTORSTypes of nuclear reactors - cylindrical and spherical- sub-nuclear particles (elementary ideas only) – source of stellar energy – controlled thermo nuclear reactions.BLOCK IV:ELEMENTARY PARTICLESFUNDAMENTAL INTERACTIONS IN NATUREClassification of fundamental forces – Particle Directory and quantum numbers (Charge, spin, parity, iso-spin, strangeness etc).CLASSIFICATION OF ELEMENTARY PARTICLES
UNIT X UNIT XI UNIT XII	NUCLEAR REACTORS Types of nuclear reactors - cylindrical and spherical- sub-nuclear particles (elementary ideas only) – source of stellar energy – controlled thermo nuclear reactions. BLOCK IV: ELEMENTARY PARTICLES FUNDAMENTAL INTERACTIONS IN NATURE Classification of fundamental forces – Particle Directory and quantum numbers (Charge, spin, parity, iso-spin, strangeness etc). CLASSIFICATION OF ELEMENTARY PARTICLES Leptons, Baryons and quarks. Spin and parity assignments, isospin, strangeness.
UNIT XI UNIT XII UNIT XIII	NUCLEAR REACTORS Types of nuclear reactors - cylindrical and spherical- sub-nuclear particles (elementary ideas only) – source of stellar energy – controlled thermo nuclear reactions. BLOCK IV: ELEMENTARY PARTICLES FUNDAMENTAL INTERACTIONS IN NATURE Classification of fundamental forces – Particle Directory and quantum numbers (Charge, spin, parity, iso-spin, strangeness etc). CLASSIFICATION OF ELEMENTARY PARTICLES Leptons, Baryons and quarks. Spin and parity assignments, isospin, strangeness. GEL-MANN-NISHIJIMA RELATION

UNIT	XIV	SYMMETRIES			
		Time reversal–CPT invariance- Applications of symmetry arguments to particle reactions, Parity non-conservation in weak interaction; Relativistic kinematics.			
Book 3	For Stu	dy			
1.	Introdu 2014, 0	action to Elementary Particle Physics, Alessandro Bettin, 2nd Edition, Cambridge University Press.			
2.	Nuclea	ar and Particle Physics, Claude Amsler, 2015, Iop Publishing Limited.			
3.	Moder	n Particle Physics, Mark Thomson, 2013, Cambridge University Press.			
Refere	ences				
1.	Nuclea 2009, .	ar and Particle Physics: An Introduction, 2nd Edition, Brian R. Martin, John Wiley & Sons, Inc.			
2.	Introdu Edition Ltd	action to Nuclear and Particle Physics: Solutions Manual for Second n, C. Bromberg, Ashok Das, Thomas, 2006, Ferbel,World Scientific, Pvt			
3.	Moder Compa	n Physics- R.Murugeshan Kiruthiga Sivaprasath, 2008, S.Chand & any Ltd, New Delhi,30 th Revised Multicolour edition.			
4.	Introdu Ltd,Ne	actory Nuclear Physics-Samuel S.M. Wong, 2005, Printice Hall of IndiaPvt ew Delhi.			
5.	5. Nuclear Physics (Principle and applications)-J.S.Lilly, 2001, John Wiley & Sons (ASIA)Pte Ltd,Singapore.				
6.	 Fundamentals and Nuclear Physics, Jean – Louis Basdevant, James Rich and Michel Spiro, 2005, Springer. 				
Mode Evalua	Assignment/Seminar/Written ExaminationEvaluation				

34543	MATERIALS SCIENCE
Objectives	The main objective of this paper is to impart an interdisciplinary understanding on the fundamental scientific principles and concepts of materials that are essential for both practice and advanced study in the field of Materials Science.
Outcome	On successful completion of the course, a student will be able to
	• Obtain the basis for understanding the link between different processing techniques and the characteristics of materials
	• Provide insight into some of the steps in the production of semiconductor devices
	• Provide an introduction to experimental methods that are used in parts of materials science
Schedule	Contact Hours: 16 hours
Prerequisite	Basic knowledge on material and thin films are Prerequisite.
	BLOCK I: MATERIAL BEHAVIOUR
UNIT I	ELASTIC BEHAVIOUR OF MATERIAL
	Elastic, Inelastic and Viscoelastic behaviour of materials – tensile strength, toughness, elongation, plastic deformation, hardness, creep and fatigue.
UNIT II	POLYMERS
	Polymers - Structure and Properties - Addition and condensation polymerization – Polymer types.
UNIT III	APPLICATION OF POLYMERS
	Application of polymers - Corrosion and Oxidation of metals – Prevention - Corrosion resistance materials.
	BLOCK II: THIN FLIMS
UNIT IV	VACUUM PUMPS
	Kinetic Theory of gases – Gas Transport and Pumping – Vacuum Pumps – Rotary, Diffusion and Turbo molecular Pumps – Pirani and Penning Gauges.
UNIT V	THIN FILMS BY EVAPORATION

	Thin films by Thermal evaporation – Thickness measurement – Quartz crystal method.
UNIT VI	THIN FILMS BY EPITAXY
	Epitaxy – Structural Aspects – Lattice Misfit and Imperfections – Liquid Phase Epitaxy – Vapour Phase Epitaxy – Epitaxy of compound semiconductors – Applications.
	BLOCK III: OPTICAL MATERIALS
UNIT VII	PRINCIPLES OF LASER
	Principles of Laser - Population inversion in three level and four level systems – Resonators-Q-switching and Mode locking.
UNIT VIII	TYPES OF LASER
	Solid state lasers – Ruby and Nd-YAG - Semiconductor lasers – GaAs/AlGaAs semiconductor laser – Gas lasers – He-Ne and CO ₂ Lasers.
UNIT IX	NON-LINEAR OPTICAL PROPERTIES OF MATERIALS
	Electro-optic Effect – Pockel's effect, Kerr effect – Second harmonic generators – Electro-optic Modulators – Photorefractive Materials – Acousto-optic effect.
	BLOCK IV: COMPOSITE AND SMART MATERIALS
UNIT X	COMPOSITE MATERIALS
	Introduction – Polymer-matrix composites – Cement-matrix composites – Carbon-matrix composites – Metal-matrix composites – Ceramic-matrix composites.
UNIT XI	APPLICATIONS OF COMPOSITE MATERIALS
	Applications – Structural – Electronic – Thermal – Electrochemical – Environmental – Biomedical.
UNIT XII	SMART MATERIALS
	Amorphous and glassy materials – Structure – Preparation methods and novel properties.
UNIT XIII	APPLICATIONS OF SMART MATERIALS

		Shape memory alloys – Working mechanism – Pseudo elasticity – Applications – Nickel-Titanium (Nitinol) alloys – Material characteristics of Nitinol.	
UNIT	XIV	MICRO ELECTRO MECHANICAL SYSTEMS	
		Introduction to Micro Electro Mechanical Systems (MEMS) – Silicon, porus Silicon and Silicon oxide based MEMS –Fabrication of piezoelectric and Piezo-resistive MEMS materials – Application to micro- actuators and microaccelerometers.	
Book	For Stu	dy	
1.	Materi 2015.	als Science and Engineering – V. Raghavan, 6th Edition, PHI Learning,	
2.	2. Materials Science and Thin Films – Milton Ohring, 2 nd Edition, ELSER, 2009.		
3.	 Laser and Non Linear Optics- B.B. Laud, 3rd Edition, New Age International Limited, 2011. 		
4.	Compo Books	osite Materials: Science and Applications – Deborah.D.L. Chung, ANE- , New Delhi, 2011.	
5.	Smart Vijay	Material Systems And MEMS: Design And Development Methodologies- K.Varadan, K.J. Vinoy, S. Gopalakrishnan, Wiley India, 2011.	
Refer	ences		
1. 2.	 Introduction to Materials Science for Engineers – James F. Shackelford, Madanapalli K. Muralidhara, Pearson India, 2006 Handbook of Thin Film Deposition: Principles, Methods, Equipment and Applications- Seshan, 2nd Edition, William Andrew Publishing, 2002. 		
Mode Evalu	of ation	Assignment/Seminar/Written Examination	

34544	ADVANCED ELECTRONICS AND PHYSICS LABORATORY - IV
Objectives	The main objective of this practical paper is to exercise the practical in various advanced electronics and advanced analytical experiments to the students.
Outcome	 On successful completion of the course, a student will be able to Understand the basic operations in electronic circuits Develop the programming skills of Microprocessor Understand the concept of ICs manufacturing Appreciate the applications of Microprocessor programming Understand the basic principles of the experiments Understand simple concepts to demonstrate an experiment
Schedule	Contact Hours: 120 hours
Prerequisite	Basic knowledge on transistor, diode, amplifier, oscillators, semiconductor, spectrometer and microscope are prerequisite.
	 (Any Fifteen of the following) 1. BCD to 7 segment display and BCD decoder. 2. Shift register and ring counter. 3. Operation of 7489 RAMS. 4. Arithmetic operations – Microprocessor 8085. 5. Logical operations - Microprocessor 8085. 6. Code conversion - Microprocessor 8085. 7. Determination of Plank's constant using photocell apparatus. 8. e/m by Millikan's oil drop method. 9. e/m by Thompson's oil drop method.

10. Thermal Conductivity of a bad conductor (Lees Method).
11. Hydrogen spectrum and Rydberg's constant.
12. Determination of BH and M using magnetometers.
13. Determination of Stefan's constant.
14. Fabrey-Perot interferometer.
15. Solar cell characteristics.
16. Polarizability of liquids – Hollow prism – Spectrometer.
17. Determination of specific rotatory power of a liquid using polarimeter.
18. Any of the experiments of equal standard.

e. 3. Duration of the Programme:

The Programme for the degree of Master of Science in Physics shall consist of two academic years divided into four semesters. Each semester consists of Three Theory Papers and One Practical Paper. Each Theory course carries 4 credits and Practical course also carries 4 credits. Hence, the total credits per semester are 16 and the total credits of the programme are 64.

e. 4. Faculty and Support Staff Requirements:

The required Faculty and Supporting Staff details for the degree of Master of Science in Physics programme are given below:

Staff category	Required
Core Faculty	3
Faculty for Specialization	2
Laboratory Assistant	1
Clerical Assistant	1

e. 5. Instructional Delivery Mechanisms:

The instructional delivery mechanisms of the programme includes SLM - study materials, face to face contact session for both theory and practical courses of the programme, e-content of the study materials in the form of CD, MOOC courses and virtual laboratory, wherever applicable.

e. 6. Identification of Media:

The SLM - designed study materials will be provided in print media as well as in the form of CD which carries electronic version of the study material in addition to MOOC and virtual laboratory courses.

e. 7. Student Support Services:

The student support services will be facilitated by the head quarter i.e., Directorate of Distance Education, Alagappa University, Karaikudi and its approved Learning Centres located at various parts of Tamil Nadu. The pre-admission student support services like councelling about the programme including curriculum design, mode of delivery, fee structure and evaluation methods will be explained by the staff at head quarter and Learning Centres. The post-admission student support services like issuance of identity card, study materials, etc. will be routed through the Learning Centres. The face to face contact sessions of the programme for both theory and practical courses will be held at the head quarter only. The conduct of end semester examinations, evaluation and issuance of certificates will be done by the Office of the Controller of Examinations, Alagappa University, Karaikudi.

f. Procedure for Admission, Curriculum Transaction and Evaluation:

f. 1. Procedure for Admission:

A candidate who has passed B.Sc., Degree Examination with Physics or Applied Physics as main course of study of any University or any of the B.Sc., degree examination with specialization such as Applied Physics, Electronics, Nuclear Physics, Biophysics, Nanoscience or any other specialization in Physics of some other University accepted by the syndicate as equivalent thereto, subject to such condition as may be prescribed therefore shall be permitted to appear and qualify for the M.Sc. Degree in Physics of this University after a course of study of two academic years.

f. 2. Curriculum Transactions:

The classroom teaching shall be through conventional lectures, use of OHP, power point presentations, web-based lessons, animated videos, etc. The lecture shall be such that the student

should participate actively in the discussion. Student seminars would be conducted and scientific discussions would be arranged to improve their communicative skill.

For practical courses exclusive study materials containing the requirements, procedure for the experiments will be issued to the learners. In the laboratory, instruction shall be given for the experiments followed by demonstration and finally the students have to do the experiments individually.

The face to face contact sessions will be conducted **only at head quarter** as per the following schedule:

Course Type	Face to Face Contact Session	
	per Semester	
	(in Hours)	
Theory Courses	48	
(3 courses with 4 credits each)	(16 hrs per course)	
Practical Courses	120	
(1 course with 4 credits)		
Total	168	

The above mentioned face to face contact session (only at head quarter) is compulsory for all the students who have enrolled in M.Sc. Physics Programme through Distance Learning Mode.

g. 3. Evaluation:

The examinations shall be conducted separately for theory and practical's to assess the knowledge acquired during the study. There shall be two systems of examinations viz., internal and external examinations. In the case of theory courses, the internal evaluation shall be conducted as Continuous Internal Assessment via. Student assignments preparation and seminar, etc. The internal assessment shall comprise of maximum 25 marks for each course. The end semester examination shall be of three hours duration to each course at the end of each semester. In the case of Practical courses, the internal will be done through continuous assessment of skill in demonstrating the experiments and record or report preparation. The external evaluation consists of an end semester practical examinations which comprise of 75 marks for each course.

f. 3.1. Distribution of Marks for Theory Course: (CIA 25 marks + ESE 75 marks)

The internal assessment shall comprise a maximum of 25 marks for each course. In addition to continuous evaluation component, the end semester examination, which will be a written examination of at least 3 hours duration to each course, would also form an integral component of the evaluation. The ratio of marks to be allotted to continuous internal assessment and to end semester examination is 25:75. Student must have earned 75% of attendance in each course for appearing for the examination. Attendance need not be taken as a component for continuous assessment, although the student should put in a minimum of 75% attendance in each course.

The components for continuous internal assessment for theory course are:

Seminar (1 per course)	-	05 marks
Assignment (2 per course)	-	<u>20 marks</u>
Total	-	25 marks

Question paper pattern for end semester examination of theory course:

	M.Sc. Physics	
	345XY: Course title	
	(2018-19 onwards)	
Time: 3 Hours		Max. Marks - 75

PART A: Answer all questions. All questions carry equal marks. $(10 \times 2 = 20 \text{ marks})$ PART B: Answer all questions either (a) or (b). $(5 \times 5 = 25 \text{ marks})$ PART C: Answer any three questions. $(3 \times 10 = 30 \text{ marks})$

f. 3.2. Distribution of Marks for Practical Course: (CIA 25 marks + ESE 75 marks)

The evaluation of practical course, wherever applicable, will also be based on continuous internal assessment for 25 marks and an end-semester practical examination for 75 marks. The continuous assessment for practical course consists of the execution of laboratory experiments, understanding and demonstration of experiments, preparation of laboratory observation note book along with seminar/model practical, etc.

CIA	Marks
Execution of laboratory experiments,	
understanding and demonstration of	
experiments, preparation of laboratory	25

57

observation note book along with seminar/model practical, etc.

ESE

Marks

Circuit Diagram / Diagram / Formula / Tables	10
Observation	20
Results	20
Viva - voce in practical	15
Record Note	10
Total	75

The candidate failing in any course(s) will be permitted to appear for each failed course(s) in the subsequent examination.

f. 3.3. Passing Minimum:

- For internal Examination, the passing minimum shall be 40% (Forty Percentage) of the maximum marks (25) prescribed for UG and PG Courses.
- For External Examination, the passing minimum shall be 40% (Forty Percentage) of the maximum marks (75) prescribed for UG and PG Courses.
- In the aggregate (External + Internal), the passing minimum shall be 40% for UG and 50% for PG courses.

g. 3.4. Classification of Successful Candidates

Candidates who secure not less than 60% of the aggregate marks in the whole examination shall be declared to have passed the examination in First class. All other successful candidates shall be declared to have passed in the Second class.

Candidates who obtain 75% of the marks in the aggregate shall be deemed to have passed the examination in First class with Distinction provided they pass all the examinations prescribed for the course at the first appearance.

Candidates who pass all the examinations prescribed for the programme in the first instance and within a period of two academic years from the year of admission to the programme only are eligible for University Ranking.

A candidate is deemed to have secured first rank provided he/she

- (i) should have passed all the courses in first attempt itself
- (ii) should have secured the highest overall grade point average (OGPA)

f. 3.5. Marks and Grading:

Once the marks of the CIA and end-semester examination for each of the courses are

available, they will be added. The marks, thus obtained will then be graded as per the scheme provided in Table 1.

Marks	Grade Point	Letter Grade
96 and above	10	S+
91 - 95	9.5	S
86 - 90	9.0	D++
81 - 85	8.5	D+
76 - 80	8.0	D
71 – 75	7.5	A++
66 - 70	7.0	A+
61 - 65	6.5	A
56-60	6.0	В
50 - 55	5.5	С
Below 50	0	F

Table 1: Grading of the Courses

From the second semester onwards the total performance within a semester continuous performance starting from the first semester is indicated respectively **Grade Point Average** (**GPA**) and **Cumulative Grade Point Average** (**CGPA**). These two are calculated by the following formula.

$$GPA = \frac{n}{\sum Ci Gi}$$
$$i = 1$$
$$\frac{n}{\sum Ci}$$
$$i = 1$$

Where 'Ci' is the Credit earned for the course 'i' in any semester; 'Gi' is the Grade Point obtained by the student for the course 'i' and 'n' is the number of courses **passed** in that semester. **CGPA** (Cumulative Grade Point Average) = Average Grade Point of all the Courses starting from the first semester to the current semester.

f. 3.6. Maximum Duration for the Completion of the Course:

The maximum duration for completion of M.Sc. Degree in Physics Programme shall not exceed ten semesters.

f. 3.7. Commencement of this Regulation:

These regulations shall take effect from the academic year 2018-2019 i.e., for students who are to be admitted to the first year of the programme during the academic year 2018-2019 and thereafter.

f. 4. Fee Structure:

The programme has the following Fee Structure:

Sl. No.	Fees Detail	Amount in Rs.		Nature of Fees
		First Year	Second Year	
1	Admission Processing Fee	300	-	Non- Refundable
2	Course Fee	20,000	20,000	Non- Refundable
3	ICT Fee	150	150	Non- Refundable
	TOTAL	20,450	20,150	Non- Refundable

The above mentioned fee structure is exclusive of Examination fees.

g. Requirement of the Laboratory Support and Library Resources:

A well-equipped Physics Laboratory for M.Sc. Physics (Distance Learning Mode) programme was established at the Department of Physics, Alagappa University, Karaikudi with all the necessary equipments for conducting face to face contact sessions for Practical courses. The students who have enrolled in M.Sc. Physics Programme through Distance Learning Mode have to compulsorily attend the face to face contact session for Practical Courses at the said Physics Laboratory in the head quarter **only**.

Directorate of Distance Education, Alagappa University, Karaikudi houses an exclusive Library facility with adequate number of copies of books in relevant titles for M.Sc. Physics programme. The Central Library of Alagappa University is also having good number of reference books. The books available at both the libraries are only for reference purpose and not for lending services.

h. Cost Estimate of the Programme and the Provisions:

The cost estimate of the programme and provisions for the fund to meet out the expenditure to be incurred in connection with M.Sc. Physics Programme are as follows:

Sl. No.	Expenditure Heads	Approx. Amount in Rs.
1	Programme Development (Single Time investment)	20,00,000
2	Programme Delivery (Per Year)	24,00,000
3	Programme Maintenance	5,00,000

i. Quality Assurance Mechanism and Expected Programme Outcomes:

i. 1. University's Moto:

'Excellence in Action'

i. 2. University's Vision Statement:

Achieving Excellence in all spheres of Education, with particular emphasis on "PEARL"-Pedagogy, Extension, Administration, Research and Learning.

i. 3. University's Objectives:

- Providing for Instructions and Training in such Branches of Learning as the University may determine.
- Fostering Research for the Advancement and Dissemination of Knowledge

i. 4. University's Quality Policy:

Attaining Benchmark Quality in every domain of 'PEARL' to assure Stakeholder Delight through Professionalism exhibited in terms of strong purpose, sincere efforts, steadfast direction and skillful execution.

i. 5. University's Quality Quote:

Quality Unleashes Opportunities Towards Excellence (QUOTE)

i. 6. Programme's Review Mechanism:

The quality of the programme depends on scientific construction of the curriculum, strong-enough syllabi, sincere efforts leading to skillful execution of the course of the study. The ultimate achievement of M.Sc. Physics programme of study may reflect the gaining of

knowledge and skill in Physics subject. And all these gaining of knowledge in Physics may help the students to get new job opportunities, upgrading in their position not only in employment but also in the society, make students feel thirsty to achieve in research in the fields associated with Physics discipline, achieving in competitive examinations on the subject, etc.

The benchmark qualities of the programme may be reviewed based on the performance of students in their end semester examinations. Apart from the end semester examination-based review, feedback from the alumni, students, parents and employers will be received and analyzed for further improvement of the quality of M.Sc. Physics Programme.

MINUTES OF THE MEETING OF THE BOARD OF STUDIES IN PHYSICS FOR M.Sc. PHYSICS (DISTANCE EDUCATION MODE) PROGRAMME HELD ON 23.06.2017

The Board of Studies Meeting for M.Sc. Physics (Distance Education Mode) programme was held on 23.06.2017 at 11:00 a.m. in the Directorate of Distance Education, Alagappa University, Karaikudi.

The following members were present:

1.	Dr. G. Ravi Professor and Head, Department of Physics Alagappa University, Karaikudi		Chairman
2.	Dr. R. Sivakumar Assistant Professor, Department of Physics Alagappa University, Karaikudi		Member
3.	Dr. S. Sankar Professor, Department of Physics Anna University, MIT Campus Chennai		Member
4.	Dr. S. Rajashabala Associate Professor Department of Theoretical Physics Madurai Kamaraj University, Madurai	8	Member

At the outset, the Chairman of the Board, Dr. G. Ravi, has extended a very warm welcome to all the Members of the Board and briefly narrated the need and significance of designing the regulation and syllabi for M.Sc. Physics (Distance Education mode) programme.

The board appreciated the Vice-Chancellor for taking efforts in revising the curriculum and syllabi of the said programme.

After detailed discussion and deliberations, the Board has unanimously resolved to approve the regulation and revised syllabi of the M.Sc. Physics (Distance Education mode) programme to be introduced in the Directorate of Distance Education.

The board resolved to include internal assessment mark 25 and annual examination mark 75, during the implement of this revised syllabi.

The detailed revised syllabi and the regulations are enclosed in the Appendix.

The Chairman of the Board thanked the Members of the Board for the deliberations made in the meeting.

Name of the Member

Signature

GF Varia3/6/17

Dr. R. Sivakumar

Dr. S. Sankar

Dr. G. Ravi

R. Sikkiz 22/06/2017 Contrar 23/6/17 9. Reformutch 23/6/17

Dr. S. Rajashabala